Screening for Patent Quality*

Mark Schankerman† Florian Schuett‡

January 2018

Abstract
To study how governments can improve the quality of patent screening, we develop an integrative framework incorporating four main policy instruments: patent office examination, pre- and post-grant fees, and challenges in the courts. We show that examination and pre-grant fees are complementary, and that pre-grant fees screen more effectively than post-grant fees. Simulations of the model, calibrated on U.S. patent and litigation data, indicate that patenting is socially excessive and the patent office does not effectively weed out low-quality applications. We use the calibrated model to quantify the welfare effects of various counterfactual policy reforms.

Keywords: innovation, patents, screening, litigation, courts, patent fees
JEL classification: D82, K41, L24, O31, O34, O38

1 Introduction
The patent system is one of the key policy instruments to provide innovation incentives. However, there is growing concern among academic scholars and policymakers that patent rights are becoming an impediment, rather than an incentive, to innovation. Observers worry that the proliferation of patents, and the fragmentation of ownership among firms, raise the transaction costs of doing R&D, and expose firms to hold-up through patent litigation (Heller and Eisenberg, 1998; Lemley and Shapiro, 2005; Bessen and Maskin, 2009). Moreover, in the presence of costly and probabilistic review by courts, weak patents – with low probability of being upheld as valid – may end up being strong, creating greater opportunity for rent extraction (Farrell and Shapiro, 2008). These dangers have been prominently voiced in public debates on patent policy.

*We are grateful to Klenio Barbosa, Özlem Bedre, Marc Bourreau, Jay Pil Choi, Vincenzo Denicolò, Rafael Ferraz, Alberto Galasso, John Golden, Dan Klerman, Eirik Kristiansen, Patrick Legros, Matt Mitchell, Pierre Régibeau, Dave Rietzke, Monika Schnitzer, Tim Simcoe, and David Schwartz for helpful comments. We also benefitted from seminar participants at universities in Tilburg, Bolzano, Florence, Helsinki, Tel Aviv, Norwegian School of Economics, Telecom ParisTech, Duke, Max Planck Institute for Innovation and Competition, and ETH Zurich. We especially want to recognize William Matcham for outstanding research assistance. The simulation analysis in Section 5 was done with his collaboration. All errors are our own.
†London School of Economics and Centre for Economic Policy Research. E-mail: m.schankerman@lse.ac.uk
‡TILEC & CentER, Tilburg University. E-mail: f.schuett@uvt.nl
(Federal Trade Commission, 2011; The Economist, 2015), recent U.S. Supreme Court decisions (eBay Inc. v. MercExchange, 547 U.S. 338, 2006), and the Leahy-Smith America Invents Act of 2011, the most significant statutory change to the U.S. patent system in half a century.

Critics claim that these problems arise in large part from ineffective patent office screening, granting patents to obvious inventions that do not represent a substantial inventive step, especially but not only in new areas such as business methods and software. This view is buttressed by anecdotes of egregious cases (Jaffe and Lerner, 2004), but there is very little direct evidence on the extent of the patent-quality problem.¹ One high-profile example is the Amazon ‘one click’ shopping patent, granted in 1999. The patent was licensed to Apple, as well as Barnes & Noble (to settle a patent infringement claim), and was highly profitable by all accounts. Despite widespread skepticism as to its validity, it was never challenged in court and ran to full term (expiring in 2017).

The one-click patent illustrates several important points which will emerge in this paper. The first is that the validity of a patent is different from its private value. In particular, a patent may be privately valuable despite being of questionable validity. Second, even valuable patents often do not have their validity determined by the courts because challenges are endogenous. This limits the effectiveness of courts in screening patents. Third, the fact that a patent does not get litigated does not mean it does not impose social costs (e.g., through royalties).

There is widespread criticism about ineffective patent screening, but relatively little formal economic analysis of the issue. Notable exceptions include Schuett (2013a, 2013b), who studies how patent examination intensity, examiner incentives, and application fees affect ex ante choice of research projects by inventors, and Kou, Rey and Wang (2013), who study the impact of the non-obviousness threshold for patenting on project selection.² Legal scholars have proposed a variety of ways to improve patent screening, including the use of external peer review (Noveck, 2006), strengthening the non-obviousness standard for patentability (Eisenberg, 2004; Dreyfuss, 2008), and weakening the presumption of validity and the evidentiary standards for invalidation in the courts (Lichtman and Lemley, 2007). Some scholars have argued that it may be rational for the patent office not to screen too rigorously, and that the remaining burden of screening should be picked up by the courts – the ‘rational ignorance’ argument (Lemley, 2001). Taken to its extreme, this logic might suggest a pure registration system in which the patent office makes no substantive examination effort at

¹Survey evidence suggests the problem may be widespread. Paradise, Andrews and Holbrook (2005) find that 38 percent of claims in a small sample of human gene patents were problematic, and Henkel and Zischka (2015) conclude that 75 percent or more of German patents are fully or partially invalid (as reflected in court outcomes).

²Other related studies include Caillaud and Duchene (2011) and Atal and Bar (2014).
all. However, these proposals have not been subjected to formal economic analysis.

In this paper we study how policy-makers can most effectively use the instruments at their disposal to improve patent screening. We focus on four key policy instruments: the intensity of patent office examination, pre-grant (application) fees paid before patent examination, post-grant (issuance/renewal) fees paid by inventions that have passed examination, and review by the courts for patents challenged by a competitor. For most of the analysis, we assume that courts are perfect in that they invalidate patents on obvious inventions with certainty; we relax this later and study how results change with the characterization of courts. To our knowledge, we are the first to develop an integrative framework incorporating all four policy instruments, and to study how they interact.

In order to assess the severity of the patent-quality problem and study the welfare impact of counterfactual policy reforms, we need a formal model of the underlying process. Perhaps the best example in the patent context is the recent paper by Hopenhayn and Squintani (2015), who study the impact of the strength of patent rights on the timing of innovation disclosure and simulate a calibrated version of their model to conduct policy experiments. In our context, it is hard to know how many low-quality patent applications and grants there are without a calibrated model of the screening process. First, the quality of applications is unobservable, so the grant rate does not directly tell us how good a job the patent office is doing. Second, litigated patents are highly selected and litigation outcomes are not representative of the general population. Thus the frequency of court invalidation does not directly tell us what share of all patents is of low quality (even if courts were perfect). By putting structure on the problem and exploiting an equilibrium framework, our approach allows us to get around both of these issues.

We develop a model in which an inventor faces a competitor. The inventor is endowed with an idea for an invention which can be either obvious (‘low type’) or non-obvious (‘high type’). The invention type is private information to the inventor. (What matters for the analysis is that the inventor has better information on validity than the competitor.) An obvious invention is profitable to develop in the absence of a patent, whereas a non-obvious one requires patent protection to be profitable. Since patent protection increases the profit for both types, however, owners of obvious inventions also have a private incentive to seek a patent. There is a net social cost (benefit) of granting patents for obvious (non-obvious) inventions, so effective screening is important for welfare.

The inventor chooses whether to pay a pre-grant fee and, if subsequently approved (patent office screening is imperfect), whether to pay a post-grant fee to activate the
patent (issuance and renewal fees). If the patent is activated, the inventor may choose to license the invention to the competitor, and the competitor chooses whether to challenge the validity of the patent in court. The baseline model has a perfect court that always invalidates an obvious patent and upholds a non-obvious one. In an appendix and the simulations, we also analyze a generalized version of the model in which both the patent office and the court make two-sided errors – granting/upholding an obvious patent and rejecting/invalidating a non-obvious one.3 Formally, our model is a signaling game in which each decision by the inventor can reveal information about the invention type, and the competitor Bayesian updates.4

The key results are as follows. First, we obtain a semi-separating equilibrium in which high types always apply for patents and charge high license fees, while the low types either randomize between offering low and high license fees, or between applying and not applying for patents. The decision they randomize over depends on the level of pre- and post-grant fees, as well as on the examination intensity and the cost of going to court. This highlights the fact that the policy instruments interact in shaping the equilibrium.

Second, complete screening (where no low types obtain patents) requires that the patent office makes a positive level of examination effort and charges a positive pre-grant fee. This highlights the fact that fees cannot completely screen in a pure registration system. Complete screening can be achieved by a combination of pre-grant fees and examination that is sufficiently rigorous. We also show that, even if the courts are mistake-free, they cannot eliminate all bad patents. This is because of selection into litigation: in equilibrium not all low-type patents are challenged by the competitor. This result raises serious doubts about over-reliance on the court system to weed out bad patents.

Third, we study the optimal structure of fees and show that a social planner would always frontload fees, i.e., rely on pre-grant rather than post-grant fees. The intuition is that the low type prefers post-grant fees to pre-grant fees more strongly than the high type because the low type has a smaller chance of passing examination. This result calls into question the current structure of fees at the major patent offices around the world, where post-grant fees are much higher than pre-grant fees.5 There may be

3Shavell (1995) examines how private appeals can be an effective mechanism to correct for erroneous decisions of the lower court. One can think of a patent challenge in our model in a similar light – the challenge is helping to correct for mistakes of the patent examiner.

4Reinganum and Wilde (1986) model a settlement game where the informed party makes an offer, as in our model. To our knowledge, Meurer (1989) was the first to analyze such a settlement game in the context of patent litigation, but his focus was not on patent screening.

5Pre-grant fees for a typical patent application in the U.S. are $1,740, whereas post-grant fees for a patent renewed to full term amount to $13,560. Of course, the applicant also incurs the legal cost of preparing the patent application, which typically is in the range of 10-20 thousand dollars.
reasons outside our model for backloading fees. The main one is that small firms may face liquidity constraints, but the current practice in the U.S. which halves all fees for small firms is a simple administrative way to address such concerns. Whatever benefits there might be to backloading fees must be traded off against the costs of impairing the effectiveness of screening.

Fourth, we show that the private incentives to challenge a patent can be either too high or too low relative to the socially optimal level. Conventional wisdom suggests that the private incentives to challenge are inadequate due to the public-good nature of challenges (Farrell and Merges, 2004; Choi, 2005; Farrell and Shapiro, 2008). While this point is valid, it is also incomplete. In line with the results from the law and economics literature (e.g., Shavell, 1997; Spier, 1997), we show that private and social incentives to challenge patents, and to settle disputes, generally diverge. On the cost side, a challenger does not take into account the patentee’s litigation cost. On the benefit side, the private gains from a successful challenge – i.e., the challenger’s incremental profit from invalidation – can be either larger or smaller than the social gains, given by the deadweight loss that is eliminated. In addition, we show that there is a strategic motive for the holder of a low-quality patent to set the licensing fee so low as to preempt a socially desirable challenge. This behavior – which is often associated with patent assertion entities (‘patent trolls’) – emerges as an endogenous outcome in our model.

Finally, we simulate the model, calibrated so that the equilibrium predictions of the model match the observed outcomes in the U.S. from the patent office and litigation in the courts. The simulations have two purposes: first, to characterize the severity of the current problem with patent quality and screening, and second, to study the welfare impact of various counterfactual policy reforms. We simulate the model both with a perfect court and an imperfect court. In both settings, we find that at least 75 percent of patent applications are made on inventions that would be developed even without patent rights, and that the patent office is relatively ineffective at screening them out, as it does so with a probability of only about 30 percent. This implies that between 65 and 81 percent of granted patents are invalid, depending on the specification of the courts.

These findings highlight the current crisis in patent screening, and the need to develop effective policies to address it. We use the simulations to quantify the effects of policy reforms including frontloading fees, intensifying patent office examination, reducing litigation costs to the level associated with the post-grant review process recently introduced by the America Invents Act, and replacing examination with a pure registration system. The simulations indicate that the first three reforms significantly increase welfare while the fourth one reduces it. Of course, the model is necessarily
stylized. As such, the simulation results should perhaps be viewed as indicative of the severity of the patent screening problem and the policy reforms that are likely to be most effective in addressing it.

Throughout the paper, we take the existence of a patent system as given. It is not a priori clear whether a patent system is the optimal mechanism in the environment we consider. However, since abolishing the patent system is not on the table in the foreseeable future, we believe that exploring how to improve the functioning of the existing system is a worthwhile endeavor in its own right. One of the advantages of the game-theoretic approach we adopt, as compared to the mechanism design alternative, is that it allows us to calibrate the model to evaluate the performance of the current patent screening institutions and to assess the welfare effects from counterfactual policy reforms.\(^6\)

The paper is organized as follows. Section 2 presents a simple model of patent screening without courts. Section 3 introduces court challenges, derives the equilibrium, and presents comparative statics results. Section 4 studies the effectiveness of screening and develops the welfare analysis. Section 5 calibrates and simulates the model in order to illustrate the potential welfare effects of various policy reforms. Section 6 extends the model to allow for heterogeneous values of inventions. We conclude with a brief summary and directions for further research.

2 A Simple Model of Patent Screening

There is a unit mass of inventors. Each inventor is endowed with an idea \(\theta \in \{L, H\}\) for an invention. Developing an idea into an invention requires an R&D investment \(\kappa_\theta\). Ideas with \(\theta = H\) correspond to inventions with high R&D cost \(\kappa_H\) and occur with probability \(\lambda\), while ideas with \(\theta = L\) correspond to inventions with low R&D cost \(\kappa_L\) and occur with probability \(1 - \lambda\). The idea \(\theta\) (and thus the R&D cost, \(\kappa_\theta\)) is the inventor’s private information. Once an invention has been developed, the inventor can apply for a patent.\(^7\)

Profits and welfare prior to invention are normalized to zero. If the invention is developed, profits and welfare depend on whether the inventor obtains a patent. In the absence of a patent, the inventor earns \(\pi \geq 0\) and total welfare is \(w \geq \pi\) (both are gross of R&D costs). Thus, \(\pi\) is a measure of the profits the inventor can appropriate.

\(^6\)For examples of papers that take a mechanism-design approach to study innovation incentives, see Weyl and Tirole (2012), Hopenhayn, Llobet and Mitchell (2006), Galasso, Mitchell and Virag (2016), and Akcigit, Hanley and Stantcheva (2017).

\(^7\)We assume that patent applications can only be submitted on inventions, not ideas. While the legal treatment is more complicated, the basic patent ineligibility of abstract ideas was recently affirmed by the U.S. Supreme Court in the Bilski case (Bilski v. Kappos, 561 U.S. 593, 2010).
without a patent. With a patent, the inventor earns \(\pi + \Delta \), and welfare is \(w - D \), where \(\Delta > 0 \) denotes the patent premium and \(D \geq 0 \) is the social cost from patents, including the deadweight loss from monopoly pricing. This captures in the simplest possible way the classic tradeoff whereby patents increase the incentives to innovate but at the same time impose social cost. We assume that \(w - D \geq \pi + \Delta \). This assumption says that the social returns exceed the private returns to R&D, which is consistent with the evidence in Bloom, Schankerman and Van Reenen (2013).

An important modeling choice concerns the requirements for an invention to be patentable. In what follows, we impose the patentability requirement \(\kappa > \pi \), i.e., R&D costs must exceed the profits the inventor can appropriate without a patent. This corresponds to the notion that patents should be given only to those inventions that require the patent incentive to be developed, and not to those that society would have benefited from even absent a patent. This perspective is in line with the rationale courts and legal scholars typically give for the non-obviousness requirement in patent law (Eisenberg, 2004). For example, in the landmark case of Graham v. John Deere (383 U.S. 1 (1965)) the U.S. Supreme Court stated: “The inherent problem was to develop some means of weeding out those inventions which would not be disclosed or devised but for the inducement of a patent.” Of course, while this theoretical patentability criterion makes economic sense, the courts have struggled with the practical aspects of how to implement it. The various judicial standards for non-obviousness, novelty etc. reflect an attempt by the courts to do this, the basic presumption being that if an invention is obvious to those skilled in the relevant scientific arts then it is probably cheap to develop, and one does not need a patent to induce it. Put differently, one can think of obviousness as a signal of the invention’s R&D cost \(\kappa \).

In our setup, where ideas arrive exogenously and are scarce, this is also the patentability requirement that a social planner would choose. To see this, consider the planner’s decision about which types of inventors should be given patents. The planner is worried about deadweight loss, but also realizes that some socially valuable inventions will not be developed without the promise of a patent. Ideas with \(\pi \geq \kappa \), however, are developed even without a patent, so giving them a patent can never be optimal. (We abstract here from the potential benefits of disclosure.) A second concern for the planner would be that giving patents to some ideas with \(\pi < \kappa \leq \pi + \Delta \) leads to development of these

8We note two points. First, for the inventor to benefit from the invention even absent patent protection (\(\pi > 0 \)), competition must not be too fierce, or there must be an alternative appropriation mechanism such as lead time. Second, in Section 6 we relax the assumption that all inventions have the same value.

9The assumption that \(\Delta \) is the same for both types of inventors reflects the idea that patents can be valuable even if the underlying invention is obvious. Note, however, that once we introduce courts in Section 3, the expected value of a patent for high and low types will generally not be the same.
ideas even though they are not socially valuable, i.e., \(\kappa > w - D \). Our assumption that \(w - D \geq \pi + \Delta \) rules this out, however, as it implies that ideas that are not socially valuable are not privately valuable either.\(^{10}\)

To make the problem interesting, we assume that \(\kappa_H = k > \pi \geq \kappa_L = 0 \). Setting \(\kappa_L = 0 \) is without loss of generality as type-L inventions are developed regardless of whether or not a patent is expected to be obtained. (In the simulations in Section 5 we do not impose \(\kappa_L = 0 \) and actually generate an estimate of \(\kappa \) for both type-L and H inventions.) In order to ensure that patent protection can provide sufficient incentive for type-\(H \) inventors to develop their ideas, we assume \(\Delta \geq k - \pi \). Note that this implies \(w - D \geq k \), so that investment by type-\(H \) inventors is socially valuable even if it comes at the expense of deadweight loss.

Under these assumptions, type-\(H \) inventors should be given patents while type-L inventors should not. The problem, of course, is that the type \(\theta \) of an invention is privately observed by the inventor. Since type L also benefits from patent protection, society must put in place a screening mechanism. We start by considering the patent office; in Section 3 we introduce the courts as a second ‘line of defense.’

To obtain a patent, the inventor must submit an application to the patent office and pay a pre-grant fee \(\phi_A \geq 0 \). The patent office then examines the application. We assume that type-H inventions always pass the examination, while type-L inventions pass the examination only with probability \(1 - e \), where \(e \in [0, 1] \) represents the patent office’s examination intensity; with probability \(e \) type-L inventions are detected and refused patent protection. (We relax the assumption that there are no erroneous rejections in Appendix B.) Inventions that pass the examination must pay a post-grant fee \(\phi_P \geq 0 \) in order to be issued a patent.\(^{11}\) This payment thus occurs after the patent office has decided whether to allow or reject the application, and has to be paid only in case of

\(^{10}\)One possible objection to such a patentability requirement is that, in an alternative environment where ideas do not arrive exogenously but inventors choose which research projects to pursue, it may encourage high-cost inventions. However, even in an environment with endogenous ideas, our patentability requirement can be justified because R&D cost may be a signal of value, and the planner may want to promote ‘ambitious’ research.

To see this formally, suppose the inventor can choose between different ideas, and that ideas differ in value \(v \). To simplify, assume there are two levels of value, \(v \in \{v_L, v_H\} \), with associated profits \(\pi(v_L) \) and \(\pi(v_H) > \pi(v_L) \). When deciding whether to invest, the inventor only observes \(\kappa \) and not \(v \). Assume, however, that \(\kappa \) is a signal of value: that is, letting \(p_{\kappa} \equiv \Pr(v = v_H|\kappa) \), \(p_{\kappa_H} > p_{\kappa_L} \). Then expected welfare can be written \(E(w(v)|\kappa) = p_{\kappa}w(v_H) + (1 - p_{\kappa})w(v_L) \), where \(w(v) \) denotes welfare when the invention has value \(v \). If \(E(w(v)|\kappa_H) - \kappa_H > E(w(v)|\kappa_L) - \kappa_L \), or equivalently

\[
(p_{\kappa_H} - p_{\kappa_L})(w(v_H) - w(v_L)) > \kappa_H - \kappa_L,
\]

the planner wants to encourage the inventor to go for ideas with \(\kappa = \kappa_H \). For a related argument, see O’Donoghue (1998).

\(^{11}\)As we will show, our results suggest that negative post-grant fees might be optimal. In principle this could be implemented by imposing a penalty on failed patent applications or a reward to successful applicants. Of course, this might introduce excessive incentives for the patent office to reject applications.
allowance. We will refer to payment of ϕ_P as the inventor *activating* the patent. One can think of the post-grant fee ϕ_P as a renewal fee paid in lump sum, whereby the inventor chooses to maintain his patent for some duration in exchange for payment of ϕ_P. If the inventor does not apply, does not pass the examination, or does not pay ϕ_P, the invention falls into the public domain.

Suppose for the moment that challenging the validity of a patent in court is not possible. Then an inventor of type H invests in R&D, applies for a patent, and activates it if and only if

$$\Delta - (k - \pi) - \phi_P - \phi_A \geq 0. \quad (1)$$

An inventor of type L always invests as $\kappa_L = 0 < \pi$. He applies for a patent and activates (conditional on passing the examination) if and only if

$$(1 - e)(\Delta - \phi_P) - \phi_A \geq 0. \quad (2)$$

Although derived from a highly stylized model, this pair of inequalities leads to two key observations which, as we will show, apply much more generally:

Observation 1. In the absence of sufficiently rigorous patent examination, it is impossible to deter type L without also deterring type H.

Observation 2. Pre-grant fees screen more effectively than post-grant fees.

Observation 1 is related to the fact that holding a patent is worth the same to both types (namely, Δ), but type H needs to cover an additional $k - \pi$ to make (investing and) applying worthwhile. This implies that if $e = 0$, type L’s payoff from applying strictly exceeds type H’s for any (ϕ_A, ϕ_P), so setting fees high enough to deter type L will also deter type H.

In Observation 2, pre-grant fees screen more effectively in the sense that type L prefers fees to be backloaded more strongly than type H. Keeping the sum of pre-grant and post-grant fees constant at $\phi_A + \phi_P = \Phi$, type H is indifferent over all combinations of fees: ϕ_A and ϕ_P are perfect substitutes for him. By contrast, type L strictly prefers post-grant fees to pre-grant fees. Again keeping the sum of fees constant, type L’s expected total fee payment is $\phi_A + (1 - e)\phi_P = \phi_A + (1 - e)(\Phi - \phi_A)$, which is increasing in ϕ_A. The reason why type L prefers fees to be backloaded is that pre-grant fees must be paid whether or not he passes examination, whereas post-grant fees are only paid conditional on passing examination.

A direct consequence of Observations 1 and 2 is that a necessary condition for full screening – i.e., deterring applications from type L without discouraging investment by type H – is

$$(1 - e)\Delta \leq \Delta - (k - \pi), \quad (3)$$
i.e., it requires a minimum examination intensity \(\bar{e} \equiv (k - \pi) / \Delta > 0 \). If \(e < \bar{e} \), there is no combination of fees that can achieve full screening. When we introduce challenges in Section 3, low-and high-type inventors have different expected payoffs from obtaining a patent; yet as we will show the result that fees alone cannot screen survives.

3 Introducing Court Challenges

We now extend the model from Section 2 by introducing court challenges. We model courts as differing from the patent office in two ways. First, while the patent office examines all applications, the courts only review patents whose validity is challenged (in practice, usually by a competitor or other potential licensee). We thus consider an explicit licensing game between the inventor and a competitor active in the same industry. Second, in assessing validity the courts have a different propensity to make mistakes than the patent office. To begin, we adopt the simplifying assumption that the courts do not make any mistakes: they always uphold valid patents (type \(H \)) and revoke invalid ones (type \(L \)).

In Section 5.2 and Appendix B, we examine a more general screening technology in which both the patent office and courts can make type I and type II errors. We assume that the inventor is privately informed about his type \(\theta \), as before.

Suppose the invention is a cost-reducing technology and each inventor has a single competitor. Once developed the invention can be freely used by the competitor unless it is protected by a patent. Thus, in the absence of a patent, both the inventor and competitor benefit from the cost reduction and obtain profit \(\pi \) each. Denoting consumer surplus by \(S \geq 0 \), total welfare is \(w = 2\pi + S \).

An inventor holding a patent can enter into a license agreement with his competitor. The timing of the licensing game is as follows. The inventor makes a take-it-or-leave-it offer to the competitor to license the invention at a royalty rate that generates license revenue \(F \) (for brevity, we hereafter refer to \(F \) as the license fee). The competitor decides whether to accept or reject; if she rejects, she further decides whether to challenge the patent in court. The court either upholds or revokes the patent. If the patent is upheld, the inventor can offer a new license contract to the competitor; if the patent is revoked the competitor can use the invention for free.

When the inventor holds a patent the payoff structure is as follows. Without a

\[\text{Footnotes:}\]

12 Court cases have more time to gather evidence and hear arguments than the typical time patent examiners allot to screening, and also have the patent office’s prior art search as input. Thus there is reason to believe that courts (especially bench trials) may be better at screening.

13 Assuming that the competitor receives a signal about \(\theta \) would not change the qualitative results as long as the signal is imperfect, so that the inventor has better information than the competitor.

14 Symmetry in profits is not important; what matters is that the competitor is made worse off by the inventor owning a patent.
license agreement, only the inventor can use the new cost-reducing technology while the competitor has to use the backstop technology.15 Under this asymmetric competition, the inventor earns $\pi + \Delta_I$ and the competitor $\pi - \Delta_C$, where $\Delta_I > 0$ and $\Delta_C > 0$. That is, the patent benefits the inventor and hurts the competitor. The competitor’s profits in this case ($\pi - \Delta_C$) constitute her outside option in the licensing negotiations.

With a license agreement in place, both firms can use the invention in production. Moreover, the firms are able to (jointly) exercise market power, for example by using royalties to soften competition. We capture this in reduced form by assuming that the inventor earns $\pi + m + F$ and the competitor $\pi - F$, where $m \geq 0$ is the extra profit due to market power. That is, m is the difference in industry profit with a royalty-based license ($2\pi + m$) as compared to industry profit without the royalty (2π).16 We assume that $m + \Delta_C \geq \Delta_I$, which will ensure that the inventor prefers to license his invention rather than exclude the competitor and compete with asymmetric costs. Consistent with our earlier notation we let $\Delta \equiv m + \Delta_C$.

If the competitor challenges the patent in court, she incurs litigation cost l_C while the inventor incurs l_I. We assume $l_C < \Delta_C$, since otherwise the competitor never has any incentive to challenge. During litigation the court learns the invention’s true type θ. If $\theta = L$, the court invalidates the patent and both firms can freely use the invention. If $\theta = H$, the court upholds the patent and the inventor can offer a new license contract to the competitor.

Figure 1 summarizes the timing of the entire game, from the investment stage to the licensing stage. This is a signaling game in which the inventor’s decisions to apply for and activate a patent, as well as which license fee to propose, can convey information about his type to the competitor. Our solution concept is Perfect Bayesian Equilibrium. To deal with multiplicity, we use the D1 refinement.

As we will show below, in the unique equilibrium that survives this refinement, the type-L inventor randomizes either between applying and not applying, or between

15We are assuming that infringement is not at issue. If the competitor infringed the patent without challenging its validity, the inventor could sue for infringement and would be sure to prevail.

16The parameter m can be interpreted as a measure of how lenient or restrictive antitrust policy is towards license agreements. Because the inventor has all the bargaining power, it does not matter how the extra profit m is distributed between inventor and competitor.
charging a high license fee, mimicking the type-\(H \) inventor, and a low license fee, preempting challenges. The competitor randomizes between challenging and not whenever she is charged the high license fee. Let \(\alpha \) denote the probability that type \(L \) applies, \(y \) the probability that type \(L \) charges the high license fee, and \(x \) the probability of a challenge. Furthermore, assume that the cost of examining an application with intensity \(e \) is \(\gamma(e) \). Expected welfare can then be written as

\[
W(\alpha, x, y) = 2\pi + S + \lambda(-D - x(l_C + l_I) - k - \gamma(e)) \\
+ (1 - \lambda)\alpha((1 - e)[(1 - xy)(-D) - xy(l_C + l_I)] - \gamma(e)).
\] (4)

With probability \(\lambda \), the invention is of type \(H \), in which case the inventor always applies and society incurs the social cost of patents \(D \), the R&D cost \(k \) and the cost of examination \(\gamma(e) \) with certainty, while it incurs the cost of challenges \((l_C + l_I) \) with probability \(x \). With probability \(1 - \lambda \), the invention is of type \(L \), in which case the inventor applies with probability \(\alpha \). Conditional on application, society incurs the social cost \(D \) with probability \((1 - e)(1 - xy) \), which is the probability that the low type passes examination, \((1 - e) \), and does not get challenged – i.e., the probability the low type either charges a low fee, \((1 - y) \), or he charges a high fee but the competitor refrains from challenging, \(y(1 - x) \). Society incurs the cost of challenges with probability \((1 - e)xy \), and the cost of examination with certainty. Note that, since profits and consumer surplus prior to invention are normalized to zero, \(W \) in fact represents the expected welfare gains from innovation.

3.1 Equilibrium

Let \(\hat{\lambda}(F) \) denote the competitor’s belief that she is facing a type-\(H \) inventor when offered a license at fee \(F \). Suppose type \(H \) invests and applies, and that if he is successful in obtaining a patent, he activates it and charges a license fee \(F^H = \Delta_C \) (we later show under what conditions this is an equilibrium). The competitor’s belief that the patent is valid when offered a license at fee \(F^H \) is\(^1\)

\[
\hat{\lambda} = \hat{\lambda}(F^H) = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)\alpha y}.
\] (5)

The competitor prefers challenging to not challenging if and only if \((1 - \hat{\lambda})\Delta_C \geq l_C \). The left-hand side is the expected benefit from a challenge, given by the probability that the court invalidates the patent times the increase in the competitor’s profits if the patent is invalidated; the right-hand side is the cost of litigation. The lower bound

\(^1\)In principle, (5) should also account for the possibility that a type-\(L \) inventor randomizes over the activation decision. For ease of exposition, and because it does not occur in equilibrium, we ignore this possibility here.
on $\hat{\lambda}$ occurs if the type-L inventor pools with the type-H inventor, i.e., if $\alpha = y = 1$, and is given by

$$\hat{\lambda} \equiv \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)}.$$

Because this is the lowest value that $\hat{\lambda}$ can take, we will say that a validity challenge is credible if and only if

$$(1 - \hat{\lambda}) \Delta_C \geq l_C.$$

When challenges are not credible, the competitor never challenges and accepts any license fee $F \leq \Delta_C$. Hence, both types of inventor propose $F = \Delta_C$, and holding a patent is worth the same to both of them, namely $\Delta = m + \Delta_C$. The outcome is thus exactly the same as in the simple model of Section 2.

When challenges are credible, holding a patent is generally not worth the same to both types of inventors. Because type L is less likely to survive a challenge than type H, the patent is worth less to type L for any given probability of being challenged. One might thus expect post-grant fees to be effective at screening out type-L inventors: it should suffice to set ϕ_P at (or slightly above) the expected value of a patent to type L. Since the decision to challenge is endogenous, however, this argument does not work. To see this, suppose only type-H inventors pay the post-grant fee to activate their patents (a separating equilibrium). Then the competitor correctly infers that all activated patents are valid and never challenges. But then, the patent is again worth the same to both types of inventors, and the low type would want to activate as well. As this argument suggests, and Proposition 1 establishes formally, the equilibrium generally involves mixed strategies.

Proposition 1. If $\phi_P > \Delta - \phi_A/(1 - e)$, the type-$L$ inventor does not apply and the competitor does not challenge. If challenges are credible and $\phi_P \leq \Delta - \phi_A/(1 - e)$, there is a semi-separating equilibrium in which:

(i) the type-H inventor invests, applies, activates, and proposes $F^H = \Delta_C$

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities α and $1 - \alpha$), or

(b) the license fee to propose, $F^L \in \{\Delta_C, l_C\}$ (probabilities y and $1 - y$),

such that $(1 - \hat{\lambda}) \Delta_C = l_C$; he always activates

(iii) the competitor randomizes over the decision whether to challenge or not (probabilities x and $1 - x$) if offered $F = \Delta_C$ and never challenges if offered $F = l_C$,
with
\[
x = \begin{cases}
\hat{x} \equiv \frac{\Delta_C - l_C}{\Delta + l_I} & \text{for } \phi_P < l_C + m - \frac{\phi_A}{1 - e} \\
\tilde{x} \equiv \frac{\Delta - \phi_P - \phi_A/(1 - e)}{\Delta + l_I} & \text{for } l_C + m - \frac{\phi_A}{1 - e} < \phi_P \leq \Delta - \frac{\phi_A}{1 - e}
\end{cases}
\]

This semi-separating equilibrium requires that the high type make nonnegative profit, \(\Delta - (k - \pi) - x l_I - \phi_A - \phi_P \geq 0\).

Proof. See Appendix A.

In this equilibrium, the type-L inventor sometimes reveals himself by charging a low license fee \(l_C\). The fee is such that it prevents the competitor from challenging even though she knows the patent is invalid. This outcome, where the owner of a low-quality patent charges a royalty that preempts a challenge, could be interpreted as behavior by a patent assertion entity.

When the rate of challenges is \(x\), the type-H inventor’s payoff from investing, applying, activating, and proposing \(F_H\) is \(\Pi_H \equiv \Delta - (k - \pi) - x l_I - \phi_P - \phi_A\); if a challenge occurs, the type-H inventor is sure to win but nevertheless bears the litigation cost \(l_I\). Because the rate of challenges depends endogenously on the patent office fees, the type-H inventor’s payoff is affected by \(\phi_A\) and \(\phi_P\) both directly and indirectly through their effect on \(x\).

Let \(\tilde{\alpha}\) (resp. \(\tilde{y}\)) denote the value of \(\alpha\) (resp. \(y\)) that solves \((1 - \hat{\lambda}) \Delta_C = l_C\) when \(y = 1\) (resp. \(\alpha = 1\)). From (5) it follows that \(\tilde{\alpha} = \tilde{y}\). Figure 2 depicts how the equilibrium that arises when challenges are credible depends on \(\phi_A\) and \(\phi_P\). In region 1, where \(\phi_P < l_C + m - \phi_A/(1 - e)\), fees are sufficiently low for the type-L inventor to always find it worthwhile to apply (\(\alpha = 1\)), while randomizing over the license fee to offer with \(y = \tilde{y}\). The rate of challenges is given by \(\hat{x}\). Moving toward the north-east into region 2, type L can no longer break even by proposing the low fee \(F = l_C\); he now randomizes over the application decision, applying with probability \(\alpha = \tilde{\alpha}\) while offering the high license fee \(F_H\) with certainty (\(y = 1\)). The rate of challenges is given by \(\tilde{x}\). As fees increase further and we reach region 3, the type-L inventor no longer applies (\(\alpha = 0\)) and the rate of challenges drops to zero (\(x = 0\)). The figure also shows the condition under which type H finds it profitable to invest, as represented by the \(\Pi_H = 0\) locus.

18As pointed out above, this is not the unique Perfect Bayesian equilibrium of the game. There exists a continuum of semi-separating equilibria with \(\Delta_C - l_I \leq F^H \leq \Delta_C\) and (depending on parameters) also pooling equilibria in which both types charge \(F^* \leq l_C + \lambda \Delta_C\) and the competitor refrains from challenging. However, the semi-separating equilibrium with \(F^H = \Delta_C\) is the only one that survives application of the D1 criterion.

19For recent analysis of this issue, see FTC (2016).

20Note that for certain parameters, this locus may be upward sloping, as shown in the figure. This
Remark on the allocation of legal costs The equilibrium derived above is based on each party paying its own legal costs, regardless of the outcome of trial. This is the standard rule in the U.S., but other parts of the world use loser-pays rules (sometimes called the English rule).\footnote{In two important patent cases in 2014, the U.S. Supreme Court imposed fee shifting and broadened the conditions under which this would apply (Highmark Inc. v. Allcare Health Management Systems, Inc., 134 S.C. 1744; Octane Fitness, Inc. v. ICON Health & Fitness, Inc., 134 S.C. 1756).} We now briefly discuss how the equilibrium would change with such a rule. First, a loser-pays rule raises the high type’s profit since he will no longer have to bear litigation costs if challenged. Second, the challenge-preempting license fee the low type can ask for drops to zero, with perfect courts. Third, the low type’s application rate (α) or the probability of asking for a high fee (y), depending on the region, increases: the equilibrium $\hat{\lambda}$ must now solve $(1 - \hat{\lambda})\Delta_C = \hat{\lambda}(l_C + l_I)$. It is easy to confirm that the resulting $\hat{\lambda}$ is smaller than in the baseline, and from the definition of $\hat{\lambda}$ it follows that αy must be larger. Finally, the effect on the rate of challenges x is ambiguous. In region 1, the loser-pays rule leads to $\tilde{x} = \Delta_C / (\Delta + l_I + l_C)$, which is larger than in the baseline, while in region 2 it leads to $\tilde{x} = [\Delta - \phi_P - \phi_A / (1 - e)] / (\Delta + l_I + l_C)$, which is smaller than in the baseline.

implies that the type-H inventor’s expected profit is increasing in ϕ_A over some range. The reason this can happen is that an increase in fees raises the perceived quality of patents, to the benefit of patent holders. While this argument is made in a reduced-form way in Atal and Bar (2014), here we endogenize the source of the benefits from higher perceived patent quality, namely, the fact that higher fees lead to fewer challenges and thus lower litigation costs. Under some conditions, this indirect effect of higher fees can dominate their direct effect on the high type’s profit.
3.2 Comparative statics

Patent office fees and examination intensity affect the equilibrium application rate of type-L inventors, the rate of challenges, and the license fees proposed. The next proposition characterizes these comparative statics.

Proposition 2. Suppose the type-H inventor invests, i.e., $\Pi^H \geq 0$, and challenges are credible. Then:

(i) An increase in ϕ_A or ϕ_P weakly decreases applications by type L (α), weakly decreases the rate of challenges (x), and weakly increases the probability that type L charges the high license fee (y).

(ii) An increase in e has ambiguous effects on applications by type L (α), weakly decreases the rate of challenges (x), and weakly increases the probability that type L charges the high license fee (y).

Proof. See Appendix A.

Proposition 2 shows that an increase in fees unambiguously decreases bad applications and challenges (in a weak sense). It also leads type L to charge the high license fee more often. As fees increase and we move from region 1 to 2, type-L inventors switch from randomizing over the license fee to randomizing over the application decision, and charge the high license fee with certainty. Perhaps more surprisingly, an increase in the examination intensity has ambiguous effects on applications by type-L inventors. While increasing the examination intensity directly discourages type-L inventors from applying, over some range, the application rate of type-L inventors actually increases with e. The intuition is that more rigorous examination makes it more likely that a granted patent is valid, other things equal. That is, higher e raises the competitor’s posterior belief $\hat{\lambda}$. But in equilibrium, the competitor must be indifferent between challenging and not, which requires that $\hat{\lambda}$ be held constant. Therefore, in region 2, type L responds to an increase in e by adjusting the probability of applying (α) upward. Finally, an increase in e lowers the rate of challenges: as type L’s payoff from applying declines, the rate of challenges needed to make him indifferent between applying and not is reduced.22

22More stringent patent examination can reduce the incidence of litigation, but does not necessarily do so. Although a sufficiently large increase in the examination intensity (to the point where the challenge credibility constraint (6) no longer holds) always leads to a drop in litigation, the same is not true for marginal increases in e. To see this, note that the rate of challenges x in the model does not coincide with the observed rate of litigation. Letting LR denote the rate at which patents are litigated,

16
4 Screening and Welfare

In this section we revisit the conditions for full screening. We show that when court challenges are possible, full screening again requires a minimum examination intensity, and that its level is the same as in the absence of courts. We then study the optimal fee structure and the private and social incentives for court challenges.

4.1 Conditions for full screening

The following proposition examines when and how it is possible to deter type-\(L\)-inventors without discouraging type-\(H\) inventors.

Proposition 3. There exists a combination of fees \((\phi_A, \phi_P)\) inducing full screening if and only if \(e \geq \bar{e}\). For a given \(e \geq \bar{e}\), any combination of fees satisfying

\[
(1 - e)(\Delta - \phi_P) \leq \phi_A \leq \Delta - (k - \pi) - \phi_P
\]

achieves full screening.

Proof. By Proposition 1, deterrence of type \(L\) (\(\alpha = 0\)) requires \(\phi_A \geq (1 - e)(\Delta - \phi_P)\). Investment by type \(H\) when type \(L\) is deterred (and thus, in equilibrium, \(x = 0\)) requires \(\Delta - (k - \pi) - \phi_P \geq \phi_A\). A pre-grant fee \(\phi_A\) satisfying both inequalities exists if and only if \(\Delta - (k - \pi) - \phi_P \geq (1 - e)(\Delta - \phi_P)\), or

\[
e \geq \frac{k - \pi}{\Delta - \phi_P}.
\]

Since the right-hand side increases with \(\phi_P\), the minimum level of \(e\) required to achieve full screening is obtained by evaluating (8) at \(\phi_P = 0\), yielding \(e \geq (k - \pi)/\Delta = \bar{e}\). \(\Box\)

Proposition 3 extends Observation 1 from the simple model of Section 2 by showing that full screening of inventors requires a minimum examination intensity, \(\bar{e} > 0\). This happens despite the fact that we have assumed that courts are perfect at discriminating between valid and invalid patents. The presence of courts does not even change the level of rigor required to achieve full screening, which remains \(\bar{e}\). This is because, although the courts are perfect in the sense that they learn the inventor’s type \(\theta\), challenges must be initiated by the competitor, who does not know \(\theta\). The competitor is Bayesian and updates her beliefs based on the inventor’s equilibrium strategy. If there were an in region 1 for example we have

\[
LR = \frac{x(\lambda + (1 - \lambda)(1 - e)y)}{\lambda + (1 - \lambda)(1 - e)}.
\]

That is, the litigation rate is equal to \(x\) multiplied by the percentage of patentees charging high royalties. Although raising \(e\) weakly reduces the rate of challenges, it may increase the litigation rate. This is the case in region 1, where \(x\) is constant but \(y\) increases with \(e\).
equilibrium in which only type H applies, the competitor would rationally expect any applicant to be of type H, and therefore refrain from challenging. But then, in the absence of patent examination, type L would also find it worthwhile to apply, hence such an outcome cannot be an equilibrium. Instead the equilibrium will be in mixed strategies, implying that at least some type-L inventors apply.

This result underlines the importance of the patent office. A key distinctive feature of patent office review is that all applications are examined. By contrast, court review only occurs if the competitor challenges, and that depends on the type-L inventor’s equilibrium strategy. This is the fundamental drawback of a pure registration system, relying entirely on the courts for screening.\footnote{We implicitly assume that the patent office can commit to examining all patent applications, even if in equilibrium no type-L inventor applies (region 3). This assumption can be justified in two ways. First, patent examiners have little incentive to adjust their examination intensity according to their beliefs about the proportion of good and bad applications. Second, in a richer setting where inventions differ in their commercial value, there will always be high-value inventors who apply even though their inventions do not satisfy the patentability criteria; the patent office’s examination intensity merely determines the threshold on value below which no type-L applications are submitted. (We develop this extension in Section 6.) Under the plausible assumption that the patent office does not observe the value of an invention, from the examiner’s perspective there will thus always be a strictly positive probability of the application being a low type. Provided the competitor observes the value, as we assume, our results on private challenges are unaffected.}

Proposition 3 also characterizes the fee structure that is necessary to achieve full screening. Because $\phi_P \leq \Delta - (k - \pi) < \Delta$ is needed in order for type H to invest, (7) implies that for any $e < 1$, the pre-grant fee ϕ_A must be strictly positive if type L is to be deterred. The intuition is that, if applications are costless ($\phi_A = 0$) and examination is less than perfect ($e < 1$), type-L inventors have nothing to lose from applying. Because of the mixed-strategy nature of the equilibrium, at least a fraction of type-L inventors will activate the patent for any $\phi_P < \Delta$. Completely deterring type L through the post-grant fee is possible only by setting $\phi_P \geq \Delta$, which also deters type H. In addition, satisfying (7) requires that ϕ_P be set sufficiently low, which is a variant of Observation 2 from the simple model of Section 2.

A further result of our analysis is that, despite the fact the courts are mistake-free, they cannot eliminate all bad patents that are issued. Eliminating all bad patents would require that $x = 1$ whenever $\alpha > 0$, i.e., all issued patents would need to be challenged. Alternatively, type-L inventors would have to reveal themselves so that they could be targeted by challenges. But neither of these is an equilibrium outcome. There is no equilibrium with $\alpha > 0$ and $x = 1$. There is also no equilibrium in which type-L inventors reveal themselves and then get challenged. Although for $\phi_P < l_C + m - \phi_A/(1 - e)$, type L sometimes reveals himself by offering $F = l_C$, the competitor optimally responds to this by not challenging.
4.2 Welfare

We now study the optimal fee structure. Let

\[\varepsilon \equiv [k - \pi - \Delta(\Delta_C - l_C)/(\Delta + l_I)]/(l_C + m). \]

If \(e < \varepsilon \) only region 1 is attainable, and in region 1 welfare is unaffected by \(\phi_A \) and \(\phi_P \) because \(\alpha = 1, x = \tilde{x}, \) and \(y = \tilde{y}, \) none of which depend on fees. If \(e \geq \bar{e}, \) region 3 is attainable, and any combination of fees within region 3 maximizes welfare. This is immediately clear from inspection of (4): holding \(e \) constant, welfare is maximum for \(\alpha = 0 \) and \(x = 0. \)

To make the problem interesting, assume in what follows that \(\varepsilon < e < \bar{e} \) (that is, \((1 - e)\Delta > \Delta - (k - \pi) \) and \(\Delta - (k - \pi) - \tilde{x}l_I > (1 - e)(l_C + m) \)), so that both region 1 and region 2 are attainable but region 3 is not (i.e., full screening cannot be achieved).

The social planner’s problem is to choose \(\phi_A \) and \(\phi_P \) to maximize welfare subject to type \(H \) investing, taking \(e \) as given:

\[
\max_{\phi_A, \phi_P} W(\alpha, x, y) \quad \text{subject to } \Pi^H \geq 0.
\]

Although welfare does not depend directly on \(\phi_A \) and \(\phi_P \), it depends on them indirectly through their effect on the equilibrium values of \(\alpha, x, \) and \(y. \) The following proposition characterizes the welfare-maximizing mix of fees.

Proposition 4. Suppose \(\varepsilon < e < \bar{e} \). Welfare maximization always entails fees such that \(\phi_A \geq (1 - e)(l_C + m - \phi_P) \) (region 2). If \(\Delta_C > (l_C/(l_C + l_I))D, \) welfare is maximized by setting \(\phi_P = 0 \) and \(\phi_A \) such that \(\Pi^H = 0, \) thus minimizing challenges. If \(\Delta_C < (l_C/(l_C + l_I))D, \) welfare is maximized by setting \(\phi_A = (1 - e)(l_C + m - \phi_P) \) and \(0 \leq \phi_P \leq \min\{l_C + m, [\Delta - (k - \pi) - \tilde{x}l_I - (1 - e)(l_C + m)]/e\}, \) thus maximizing challenges.

Proof. See Appendix A. \(\square \)

Proposition 4 establishes two important results. First, it is always optimal to raise fees high enough to push the equilibrium into region 2. To understand this result, note that the welfare loss from type-L inventors in (4) can be written as

\[
\alpha[(1 - e)D + \gamma(e)] - (1 - e)\alpha yx(D - (l_C + l_I)).
\]

The first term represents the social cost that low types applying for patents would cause if there were no court challenges. The second term represents the deadweight loss that is eliminated by court challenges, net of litigation costs. Recall that in region 2 type \(L \) randomizes over the application decision (\(\alpha = \tilde{\alpha}, y = 1 \)), whereas in region 1 he randomizes over the license fee to propose (\(\alpha = 1, y = \tilde{y} \)). Since \(\tilde{\alpha} = \tilde{y} \), it follows that \(\alpha y \) is the same in regions 1 and 2. This reflects the fact that in both regions \(\alpha y \)
is such that the competitor is indifferent between challenging and not. Thus holding x constant the second term in the expression above is also the same in both regions. Raising fees thus affects welfare only through the first term and through the rate of challenges x. Recall that x equals \tilde{x} in region 1 (which is constant in fees) and \hat{x} in region 2 (decreasing in fees). The proof shows that \hat{x} tends to \tilde{x} as fees approach the border between regions 1 and 2 (with equality for $\phi_A = (1 - e)(l_C + m - \phi P)$). Thus, we can achieve the same rate of challenges in region 2 as in region 1. Because the first term is increasing in α, and α is lower in region 2, the welfare loss is also lower in region 2.

Second, it is optimal to set fees to either maximize or minimize challenges, depending on parameters. The welfare effect of challenges is \textit{a priori} ambiguous. Differentiating W with respect to x, we have

$$\frac{\partial W}{\partial x} = -\lambda (l_C + l_I) + (1 - \lambda)(1 - e)\alpha y (D - (l_C + l_I)).$$

(9)

On the one hand, challenges help society get rid of invalid patents, which raises welfare provided deadweight loss exceeds litigation costs, $D > l_C + l_I$. On the other hand, challenges also create wasteful litigation of valid patents. Rewriting (9) using the definition of $\hat{\lambda}$ yields

$$\frac{\partial W}{\partial x} = (\lambda + (1 - \lambda)(1 - e)\alpha y) \left[(1 - \hat{\lambda})D - (l_C + l_I) \right].$$

(10)

The term in square brackets represents the social incentive to challenge a patent whose probability of being valid is $\hat{\lambda}$. It equals the posterior probability of the inventor being of type L (so that the courts will invalidate) times the deadweight loss that is saved if the patent is invalidated, minus the social cost of a challenge.

Now consider the private incentive to challenge. In equilibrium (be it in region 1 or region 2), we have $(1 - \hat{\lambda})\Delta C = l_C$: the competitor must be indifferent between challenging and not when the inventor charges the high license fee $F = \Delta C$. Evaluating (10) at $1 - \hat{\lambda} = l_C/\Delta C$, we see that welfare is decreasing in x if and only if

$$\Delta C \geq D \left(\frac{l_C}{l_C + l_I} \right).$$

(11)

The social and private incentives to challenge generally diverge: if (11) holds (with strict inequality), the equilibrium rate of challenges is socially excessive; if (11) does not hold, the rate of challenges is socially insufficient. In either case, the private challenge decision is inefficient.\footnote{Two points should be noted. First, there is another reason outside our model that leads to insufficient incentives to challenge patents: when there are multiple licensees, a patent challenge has the nature of a public good (Farrell and Merges, 2004; Choi, 2005; Farrell and Shapiro, 2008). Second, for...}
When equilibrium challenges are socially excessive, a social planner wants to minimize challenges. Proposition 4 shows that to achieve this, the planner should **frontload fees**, setting post-grant fees to zero while relying exclusively on pre-grant fees, and set pre-grant fees at the highest level compatible with investment by type H, so that the constraint $\Pi^H \geq 0$ is binding. The reason for this is that the rate of challenges goes hand in hand with type L’s payoff: fewer challenges are necessary to make type L indifferent between applying and not when his payoff from applying is small. Minimizing challenges subject to investment by type H requires minimizing type L’s payoff while holding type H’s payoff constant. Because type L prefers fees to be backloaded more strongly than type H, this is accomplished through a mix of fees that emphasizes pre-grant over post-grant fees.

Conversely, when challenges are socially insufficient, the planner wants to maximize challenges. To this end, the planner should set fees as low as possible within region 2. Any mix of fees located on the boundary between regions 1 and 2 (where $\phi_A = (1 - e)(l_C + m - \phi_P)$) and for which $\Pi^H \geq 0$ (which requires $\phi_P \leq [\Delta - (k - \pi) - \bar{x}l_I - (1 - e)(l_C + m)]/e$) leads to $x = \bar{x}$, which is the maximum rate of challenges that can be sustained. The optimal mix of fees is no longer uniquely determined. In general, the constraint $\Pi^H \geq 0$ does not bind at the optimum. Notice, however, that $\phi_P = 0$ continues to be in the solution set. Thus, insufficient incentives to challenge do not provide an argument against frontloading of fees.\(^{25}\)

Are the incentives to challenge likely to be excessive or insufficient? In a homogeneous-good Cournot model with linear demand and constant marginal cost (which is what we use for the simulations in Section 5), we have $\Delta_C > D$, i.e., the competitive disadvantage that the patent inflicts on the competitor is greater than the deadweight loss it causes. This alone is enough to imply that eq. (11) holds, and thus that challenges are socially excessive. We conjecture that the condition holds much more generally, though, because there is a second force that also works in the direction of excessive challenges: the competitor does not take into account the litigation cost l_I it imposes on the inventor (and society) by challenging. If litigation costs for both parties are identical ($l_C = l_I$), for example, (11) only requires $\Delta_C > D/2$.

That challenges are undesirable does not mean that the threat of challenges is undesirable. The presence of courts induces randomization by the type-L inventor and thus leads to lower license fees (region 1) or fewer bad applications (region 2). For completeness, we want to point out that there is also a second inefficiency associated with the competitor’s challenge decision which cuts in the opposite direction: when $F = l_C$, the inventor is revealed as being of type L, so a challenge is socially desirable but does not occur. The planner cannot address this second inefficiency through patent office fees, however, because the fees have no effect on the rate of challenges when $F = l_C$ (it is always zero).\(^{25}\)

Among all solutions, $\phi_P = 0$ is the one that maximizes the high type’s payoff.
Our results do suggest, however, that the value of courts stems not so much from invalidating bad patents – when incentives to challenge are excessive, the expected reduction in deadweight loss is outweighed by litigation costs in equilibrium – but from deterring bad applications and keeping a lid on royalties charged by the low type.

Implications of patent office budget constraints Proposition 4 calls for an increase in patent office fees at least to the point where $\phi_P + \phi_A/(1 - e) = l_C + m$ (region 2). Given that litigation costs can easily run a million dollars or more (AIPLA, 2015), such a steep hike may not be politically feasible. In a richer model, it might also adversely affect innovation incentives. But if patent policy is limited to operating within region 1, where patent office fees have no effect on any of the equilibrium variables, is there still an argument for frontloading? We now argue that there is, because frontloading raises fee revenue.

Suppose the patent office operates in region 1 and is constrained in the examination intensity it can set by the revenue it collects from fees, and that this constraint is binding. As a result the patent office operates at some e below the socially optimal level, so that an increase in e would raise welfare. Now consider a shift in the fee structure that leaves the sum of fees constant but shifts fees from post-grant to pre-grant. Because $\phi_A + \phi_P$ is constant and x remains at \tilde{x}, the profits of the type-H inventor are unaffected. The change in the fee structure, however, leads to more revenue being collected from type-L inventors who are refused patent protection and thus do not pay the post-grant fee but do pay the pre-grant fee. This relaxes the patent office’s budget constraint and allows it to implement a welfare-improving tightening of examination. We pursue this idea further in Section 5, where we consider a policy experiment along these lines.

5 Calibrating and Simulating the Model

5.1 Baseline simulations: perfect courts

The model generates predictions on the equilibrium grant rate, litigation rate and patent validation rate in court as functions of underlying parameters. In this section we calibrate the model’s parameters so that the predictions match the observed values of these outcomes, and then simulate the model to quantify the welfare effects of different policy reforms. We first summarize the simulation procedure and present the parameters from the baseline model (for more details, see Appendix C). We then describe the policy experiments and present results. The observed patent fees and litigation costs are such that we are in region 1 (Figure 2), hence $\alpha = 1$. For the simulations we set litigation cost to be the same for the inventor and competitor, $l_I = l_C = l$.

22
The main elements of the simulation structure are summarized below:

1. **Computed litigation rate**: To compute the litigation rate, we use the observed litigation rate for all patents and adjust it upward using the distribution of the value of patent rights estimated by Schankerman and Pakes (1986). The adjustment is made to account for the fact that only a subset of patents is worth litigating (i.e., satisfy the challenge credibility constraint).

2. **Equilibrium grant rate, \(GR \)**: The grant rate depends on the fraction of type-L patents, \(\lambda \), and the examination intensity, \(e \). This gives \(e = e(\lambda; GR) \).

3. **Equilibrium litigation rate, \(LR \)**: In the model this depends on \(\lambda, GR \) and the validation rate \(VR \). Thus we can solve for \(\lambda = \lambda(LR, GR, VR) \). From Step 2, we thus get \(e \). Using the observed examination cost per patent application at the USPTO, this allows us to back out the implied marginal cost of \(e \), denoted by \(MCE \).\(^{26}\)

4. **Cournot model of competition**: We assume an incumbent innovator faces a single competitor and a linear market demand. The incumbent uses his cost-reducing invention and may also license it. He either sets a high royalty rate, which generates income \(F = \Delta C \) or a low royalty rate with income \(F = lC \). In this model, the elasticity of demand in equilibrium, \(\eta \), depends on the demand scale parameter \(a \), initial unit cost \(c \), and percentage cost reduction from the innovation, \(s \). This implies \(a = a(c; \eta, s) \).

5. **Equilibrium patent validation rate in court, \(VR \)**: In the model, the patent validation rate depends on \((a, c, l) \). This gives an equation \(c = c(a, l; VR) \).

6. **R&D equation**: We assume that expected profit from innovations equals observed R&D expenditures per patent, \(R \), adjusted for a private rate of return. This implies a relationship \(R = R(l, a, c; \lambda, s, \eta, VR, GR) \), where \(\lambda \) is obtained from Step 3. We thus have three (non-linear) equations – R&D equation, \(a = a(c; \eta, s) \) from Step 4, and \(c = c(a, l; VR) \) from Step 5. We solve these equations to obtain (unique) values of \((a, c, l) \).

7. **Finally, to compute development costs for type-L and H inventions**, we use the inequalities that ensure that expected profit for the type-L inventor without patent protection is above \(\kappa_L \), profit for the type-H inventor is below \(\kappa_H \), and profit for the type-H inventor with the patent exceeds \(\kappa_H \). This yields a set of feasible

\(^{26}\)We assume that examination costs are linear in examination intensity. We could easily allow for convex costs, given an assumption about the cost elasticity.
\((\kappa_H, \kappa_L)\) pairs; for the simulations we use the mean of these values but the results are robust.

To summarize, the main simulation inputs are: patent office fees \(\phi_A\) and \(\phi_P\) plus cost of drafting the application; demand elasticity, \(\eta\); cost saving from innovation, \(s\); patent validation rate, \(VR\); grant rate, \(GR\); patent litigation rate, \(LR\); and R&D per patent, \(R\). The main simulation outputs are the fraction of non-obvious inventions, \(\lambda\); examination intensity, \(e\); demand and cost parameters, \((a, c)\); and development costs, \((\kappa_H, \kappa_L)\). These parameters allow us to compute all components of the welfare function. It is worth emphasizing that the grant rate, litigation rate, and validation rate uniquely pin down the parameters \(\lambda\) and \(e\) (without needing any other information).

5.1.1 Simulation results

Table 1 presents the baseline results and robustness checks. The two most striking results are \(\lambda = 0.14\) which means only 14 percent of patent applications are non-obvious, and \(e = 0.29\) which means that the patent office does not effectively screen out obvious patent applications. This can be due both to ineffective examination and/or the use of patentability standards that are too lenient. In our model we cannot distinguish these sources of ineffective screening, but it would of course be important to do so in order to target policy reform. The values of the parameters \(\lambda\) and \(e\) imply that 81 percent of granted patents cover inventions that are obvious (this is given by \((1 - \lambda)(1 - e)/[\lambda + (1 - \lambda)(1 - e)]\)), which highlights the severity of the patent-quality problem.

The simulation results are supported by three types of external validation. First, the simulated litigation cost of $1.26 million (2015 dollars) is consistent with survey evidence reported by the American Intellectual Property Law Association (AIPLA, 2015).\(^{27}\) Second, the simulation implies that patent rights account for 11 percent of total returns to an invention (column ‘Ratio’), which is very similar to estimates from patent renewal models, which are in the range of 5-15 percent (Schankerman, 1998). Third, using the expression for the grant rate, our estimates of \(\lambda\) and \(e\) imply an elasticity of the grant rate to examination intensity of -0.33. By comparison, using micro data on patents, Frakes and Wasserman (2017) estimate the elasticity of the grant rate with respect to time spent by examiners to be in the range of -0.33 to -0.50.

The cost per patent application of increasing examination intensity by one percentage point, denoted by \(MCE\) – e.g., the cost of moving from \(e = 0.29\) to \(e = 0.30\) – is $126. The probability that a type-\(L\) inventor mimics a type-\(H\) inventor by charging

\(^{27}\)Their survey reports the median patent litigation costs through end of evidence discovery and through end of trial, for different values at stake. Using the fact that more than 90% of cases are settled before the trial begins (Lanjouw and Schankerman, 2004), we compute the weighted average as approximately $1.5 million.
the high royalty rate is $y = 0.15$. This finding is noteworthy, as it means that 85 percent of obvious inventions are never challenged because the royalty rate is set at the competitor’s litigation cost in order to preempt a challenge.

Table 1. Simulation Results: Perfect Courts

<table>
<thead>
<tr>
<th>Panel A. Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
</tr>
<tr>
<td>0.14</td>
</tr>
</tbody>
</table>

Notes: Baseline parameters: $s = 0.025$, $\eta = 2$, $R = $2.4 (×10^6), $l_{\text{min}} = $350 (×10^3).

The column labeled ‘Ratio’ denotes the simulated value of $\Delta \pi(0)$ where Δ is the gain to the inventor from having a patent and $\pi(0)$ is the inventor’s profit from an unpatented invention.

Table 2 summarizes the simulation results for four policy experiments. The pre-reform welfare level is defined as welfare in the baseline patent regime minus welfare without innovation. The post-reform welfare is defined analogously. For brevity, we will refer to these changes in welfare gains from innovation as ‘welfare changes’.

5.1.2 Policy experiments

Table 2 presents the results when we vary the assumed values of R&D per patent, the size of the cost reduction (the baseline value of 2.5 percent corresponds roughly to total factor productivity growth), and the demand elasticity (in each row we vary one parameter). The results are very similar to the baseline.
the examination intensity.\footnote{In these simulations, the parameters are such that we remain in region 1 (Figure 2 in Section 3), so that the application rate of type-\(L\) inventions does not change (\(\alpha = 1\)). Raising patent fees so high that region 2 would become relevant does not seem politically feasible, and would require us to incorporate the potential effects of these fees on the supply of innovation.} There are two effects of the resulting rise in examination intensity. First, the patent office screens out more type-\(L\) patent applications, which increases welfare. Second, increasing examination intensity raises the probability that a type-\(L\) inventor charges the high royalty (and thus average royalties in the economy) because there is a stronger presumption by the competitor that a high royalty signals a type-\(H\) invention. This reduces welfare, but the net effect of the reform is to increase welfare by 1.90 percent.

The second experiment simulates the welfare effect of the post-grant review (PGR) process, introduced in the America Invents Act of 2011. This review (which is endogenous like patent challenges) is conducted by the patent office, not the courts.\footnote{For a theoretical analysis of such a mechanism almost a decade before it was introduced, see Levin and Levin (2003).} This substantially reduces the costs of a challenge; the AIPLA (2015) reports them as about $350,000, which is what we use. We also have to specify the quality of the screening in the PGR. For this simulation we make the assumption that the PGR replaces the court and screens with the same intensity as the original examination by the patent office, setting \(e_{PGR} = e = 0.29\). This reform thus has two countervailing effects: the reduction in litigation costs raises welfare but the PGR screening is worse than the (perfect) court, which reduces welfare.

We find that the net effect of the reform is to raise welfare by 3.66 percent, with firms gaining and consumers worse off. This gain comes from lower litigation costs and the fact that type-\(L\) inventors are now more likely to charge the low royalty rate because challenges are more attractive given the lower litigation costs. Thus equilibrium ‘trolling’ behavior (challenge preemption) sharply increases – the value of \(y\) declines from 0.15 to 0.03 – even though welfare improves. This highlights the danger in focusing policy too much on preventing such behavior.

Table 2. Policy Experiments with Perfect Courts

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(e)</th>
<th>(y)</th>
<th>(x)</th>
<th>(%E\Delta W)</th>
<th>(%E\Delta \pi)</th>
<th>(%E\Delta CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status quo</td>
<td>0.29</td>
<td>0.15</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frontloading</td>
<td>0.56</td>
<td>0.24</td>
<td>0.45</td>
<td>1.90</td>
<td>-5.88</td>
<td>5.72</td>
</tr>
<tr>
<td>Post-grant review</td>
<td>0.29</td>
<td>0.03</td>
<td>0.57</td>
<td>3.66</td>
<td>15.45</td>
<td>-3.83</td>
</tr>
<tr>
<td>Registration system</td>
<td>0</td>
<td>0.14</td>
<td>0.45</td>
<td>-3.10</td>
<td>4.76</td>
<td>-6.50</td>
</tr>
<tr>
<td>More stringent examination</td>
<td>0.70</td>
<td>0.36</td>
<td>0.45</td>
<td>2.91</td>
<td>-8.63</td>
<td>8.76</td>
</tr>
</tbody>
</table>

Note: Changes in welfare, profit and consumer surplus are measured net of the no-invention levels.
The third experiment replaces the patent system with a pure registration system in which there is no patent examination (but there remains the option of challenging the registered right in court). This reform reduces welfare substantially, by 3.1 percent, coming at the expense of consumers while benefitting firms.

Lastly, we increase examination intensity from the baseline value of 0.29 to 0.7, and cover the incremental cost by increasing pre-grant fees. This increases welfare, with consumers gaining at the expense of firms. We have assumed a constant marginal cost of examination; if costs are convex the welfare gains would be smaller.

In the baseline model, we assume that perfect courts always uphold type-H inventions and completely invalidate type-L inventions. In practice, courts typically invalidate only a fraction of claims. To account for this, we re-formulated the model with perfects courts to allow for partial invalidation.\footnote{We thank John Golden for this suggestion. Galasso and Schankerman (2015) report that the fraction of claims revoked in cases of patent invalidation is about 75 percent, and we use this figure to calibrate the model. In this model we treat patent claims as independent of each other, so that if a fraction f of claims is invalidated, the cost reduction equal to fs is now available to the competitor and the royalty that the incumbent can extract is only on the remaining proprietary cost reduction of $(1 - f)s$.} Simulating this alternative model yields very similar results to the baseline model, with two main differences (results not reported for brevity). First, the fraction of non-obvious inventions rises from $\lambda = 0.14$ to $\lambda = 0.28$, and the effectiveness of patent office screening increases from $e = 0.29$ to $e = 0.35$. Second, the probability that a type-L inventor mimics the type-H inventor by charging the high royalty rate rises sharply from $y = 0.15$ to $y = 0.40$. The results for the policy experiments are very similar to the baseline results.

5.2 Simulations: imperfect courts

5.2.1 A more general screening technology

Our baseline model assumes perfect courts, but many observers argue that patents are ‘probabilistic’ in nature, with court decisions subject to a considerable degree of randomness (Lemley and Shapiro, 2005). In Appendix B we analyze a more general screening technology where both the patent office and courts sometimes make mistakes. The appendix shows that the basic insights from the baseline model are robust to this generalization, provided that court screening is sufficiently accurate for the competitor to challenge when certain of facing a type-L inventor and not to challenge when certain of facing a type-H inventor.

To simulate with imperfect courts, we use a special case of the general screening technology. Specifically, we assume that with probabilities $e_1 = e$ and $e_2 = \beta + (1 - \beta)e$, respectively, the patent office and court each receives an independent draw of a signal that reveals the true invention type with certainty, where $\beta \in [0, 1]$. The case $\beta =$
1 corresponds to perfect courts. With the complementary probabilities $1 - e_1$ and $1 - e_2$ they do not receive a signal. In the absence of a signal, the patent office always accepts the patent, whereas the court upholds it with probability $\hat{\lambda}$ and invalidates it with probability $1 - \hat{\lambda}$, where $\hat{\lambda}$ is the posterior probability that the invention is of type H. This characterization corresponds to the courts applying a ‘presumption of validity’ to existing patents equal to the updated posterior on the invention type. Other things equal, when patent examination is more intensive, the court applies a stronger presumption that the patent is valid.

5.2.2 Simulation results

Table 3 presents the simulated parameters for the model with imperfect courts. We present results for two different scenarios: low quality courts ($\beta = 1/3$) and high quality courts ($\beta = 2/3$).

<table>
<thead>
<tr>
<th>Panel A. High-Quality Court</th>
<th>λ</th>
<th>e</th>
<th>l ($\times 10^6$)</th>
<th>y</th>
<th>x</th>
<th>Ratio</th>
<th>κ_L ($\times 10^6$)</th>
<th>κ_H ($\times 10^6$)</th>
<th>MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.30</td>
<td>1.12</td>
<td>0.20</td>
<td>0.39</td>
<td>0.11</td>
<td>1.42</td>
<td>4.32</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B. Low-Quality Court</th>
<th>λ</th>
<th>e</th>
<th>l ($\times 10^6$)</th>
<th>y</th>
<th>x</th>
<th>Ratio</th>
<th>κ_L ($\times 10^6$)</th>
<th>κ_H ($\times 10^6$)</th>
<th>MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>0.34</td>
<td>1.02</td>
<td>0.35</td>
<td>0.32</td>
<td>0.11</td>
<td>1.25</td>
<td>3.83</td>
<td>109</td>
<td></td>
</tr>
</tbody>
</table>

With high-quality (imperfect) courts, the simulated parameters are very similar to the case of perfect courts (compare Tables 1 and Panel A, Table 3). The probability that a type-L inventor charges the high royalty (y) is somewhat higher (less challenge preemption) because the imperfect court may actually uphold the type-L patent if challenged. Panel B in Table 3 shows that the results are generally robust even with a low-quality court. The main difference is that the proportion of non-obvious inventions nearly doubles, from 0.14 with perfect courts to 0.26 and, not surprisingly, the probability that a type-L inventor charges the high royalty rate increases sharply from 0.15 to 0.35.

Table 4 presents the policy simulations with low-quality courts (results are similar with high-quality courts). In this case, for the post-grant review experiment, we again set e_{PGR} equal to the value of $e = 0.34$ simulated in the low-quality court model. The

31Details are in Appendix C.5.
results confirm that the overall pattern is similar to the baseline model. Frontloading fees, the post-grant review, and increasing examination intensity all generate welfare gains, while a registration system reduces welfare. It is also worth noting that frontloading fees and the post-grant review generate significantly larger welfare gains when courts are imperfect (compare Tables 2 and 4). Given the concern over probabilistic courts, frontloading fees and post-grant review (or any reform that reduces litigation costs) become more attractive policy options.

Table 4. Policy Experiments with Low-Quality Court

<table>
<thead>
<tr>
<th>Experiment</th>
<th>e</th>
<th>y</th>
<th>x</th>
<th>%EΔW</th>
<th>%EΔπ</th>
<th>% EΔCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status quo</td>
<td>0.34</td>
<td>0.35</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frontloading</td>
<td>0.65</td>
<td>0.66</td>
<td>0.32</td>
<td>3.89</td>
<td>-13.82</td>
<td>10.88</td>
</tr>
<tr>
<td>Post-grant review</td>
<td>0.34</td>
<td>0.08</td>
<td>0.54</td>
<td>6.24</td>
<td>23.37</td>
<td>-0.56</td>
</tr>
<tr>
<td>Registration system</td>
<td>0</td>
<td>0.23</td>
<td>0.32</td>
<td>-4.22</td>
<td>16.38</td>
<td>-11.80</td>
</tr>
<tr>
<td>More stringent examination</td>
<td>0.70</td>
<td>0.77</td>
<td>0.32</td>
<td>4.54</td>
<td>-15.64</td>
<td>12.69</td>
</tr>
</tbody>
</table>

6 Extension: Heterogeneous Invention Values

The baseline model assumes that inventions have identical private (and social) value, but differ in their development cost. The key distinction is between the high type, which needs patent protection to cover this cost, and the low type, which does not. In this section we study a modified version of the model where inventions differ in both value and development cost. The distinction between high and low types is still based on whether patent rights are needed to induce development, but here this varies with both cost and value. As in the baseline, the supply of ideas for inventions is taken to be exogenous.

We show that two key ideas from the baseline model also hold in this context. First, we cannot screen out low types of a given value without using both examination and pre-grant fees (i.e., these two instruments are complements). Second, holding the incentive to invest for high types fixed, frontloading patent fees reduces the set of low types that apply.

Suppose ideas differ along two dimensions: value, indexed by \(v \in [v_1, v_2] \), and development cost \(\kappa \in [\kappa_1, \kappa_2] \). In the absence of patent protection an idea of value \(v \) is associated with profit \(\pi(v) \) and welfare \(w(v) \). With a patent the inventor earns an additional \(\Delta(v) = m(v) + \Delta_C(v) \) while welfare is reduced by \(D(v) \). Ideas \((v, \kappa)\) are drawn from some continuous distribution. Both the inventor and the competitor observe \(v \), but only the inventor observes \(\kappa \). Translated to this environment, our patentability requirement becomes \(\kappa > \pi(v) \). To remain consistent with our previous terminology,
we refer to types with \(\kappa > \pi(v) \) as high types and to those with \(\kappa \leq \pi(v) \) as low types. For simplicity, assume that \(l_I = 0 \) and \(l_C = l(v) < \Delta_C(v) \) for all \(v \). Furthermore, assume that all functions of \(v \) are continuous and increasing.

The following proposition characterizes the equilibrium.

Proposition 5. There exists a cutoff \(v^* \), defined by

\[
\Delta(v^*) = \phi_A + \phi_P,
\]

such that high types never invest for \(v < v^* \). For \(v \geq v^* \), they invest, apply, activate and propose \(F = \Delta_C(v) \) if \(\kappa \leq \pi(v) + \Delta(v) - \phi_A - \phi_P \) and do not invest otherwise. Similarly, there exist two cutoffs \(\hat{v} \) and \(\tilde{v} \), defined by

\[
\Delta(\hat{v}) = \phi_P + \frac{\phi_A}{1 - e}
\]

and

\[
l(\tilde{v}) + m(\tilde{v}) = \phi_P + \frac{\phi_A}{1 - e},
\]

such that low types behave as follows:

(i) for \(v < \hat{v} \): \(\alpha = 0 \) and \(y = 1 \)

(ii) for \(\hat{v} \leq v < \tilde{v} \): (a) if challenges are credible, \(\alpha = \hat{\alpha}(v) \) and \(y = 1 \), (b) if challenges are not credible, \(\alpha = y = 1 \)

(iii) for \(\tilde{v} \leq v \): (a) if challenges are credible, \(\alpha = 1 \) and \(y = \hat{\gamma}(v) \), (b) if challenges are not credible, \(\alpha = y = 1 \)

where \(\hat{\alpha}(v) \) and \(\hat{\gamma}(v) \) are such that the competitor is indifferent between challenging and not.

This is a straightforward extension of the analysis from the baseline model. The proposition says that high types only invest and apply if their ideas are sufficiently valuable. Low types always invest, and apply for patents at least some of the time if their ideas are sufficiently valuable. The rate at which they apply, \(\alpha \), depends on \(v \) and on whether challenges are credible given \(v \). The intuition is as follows. For high types, \(v^* \) is the threshold value at which the gains from patenting exceed the costs.

\[\text{Formally, let } G_v(\kappa) \text{ denote the cumulative distribution function of } \kappa \text{ conditional on } v. \text{ Challenges are credible for some } v \geq v^* \text{ if and only if } (1 - \Delta(v))\Delta_C(v) \geq l(v), \text{ where}
\]

\[
\hat{\Delta}(v) = \frac{G_v(\pi(v) + \Delta(v) - \phi_A - \phi_P) - G_v(\pi(v))}{G_v(\pi(v) + \Delta(v) - \phi_A - \phi_P) - eG_v(\pi(v))}.
\]

Making the competitor indifferent requires \((1 - \hat{\lambda}(v))\Delta_C(v) = l(v) \), where

\[
\hat{\lambda}(v) = \frac{G_v(\pi(v) + \Delta(v) - \phi_A - \phi_P) - G_v(\pi(v))}{G_v(\pi(v) + \Delta(v) - \phi_A - \phi_P) - eG_v(\pi(v)) + (1 - e)\alpha y G_v(\pi(v))}.
\]
so – provided the development cost is low enough – they apply for and activate their patent and, as in the baseline model, charge the high royalty. For low types, \(\hat{v} \) is the corresponding threshold – they earn at most \(\Delta(v) \) from a patent and pay the post-grant fee, with probability \((1 - e) \), plus pay the application fee. Thus for \(v < \hat{v} \) they do not apply. If challenges are not credible, then for any \(v > \hat{v} \), low types always apply and charge the high royalty since they are not at risk of litigation. If challenges are credible, low types randomize. If \(v \) is high enough for the low royalty \(l(v) + m(v) \) (the license fee that preempts challenges plus the extra rent from the incremental market power) to cover fees, \(v > \tilde{v} \), they always apply and randomize over the royalty rate. If the low royalty does not generate sufficient revenue (\(\hat{v} < v < \tilde{v} \)), they randomize over application and charge the high royalty.

The application behavior is illustrated in Figure 3 for the case where challenges are credible for all \(v \geq \hat{v} \). The figure depicts the space of ideas \((v, \kappa) \), whose support is represented by the dashed box. The grey shaded area shows the set of high types that invest and apply, i.e., those for which \(\pi(v) < \kappa \leq \pi(v) + \Delta(v) - \phi_P - \phi_A \). The figure also shows how different sets of low types \((\kappa \leq \pi(v)) \) differ in their application behavior: those with \(v < \hat{v} \) never apply, those with \(\hat{v} \leq v < \tilde{v} \) randomize over the application decision, and those with \(v \geq \tilde{v} \) apply with certainty. The figure shows how inventor behavior varies with value, holding patent fees constant. One could easily add another dimension to the figure to show how the equilibrium varies with patent fees. It should be clear that changes in fees would have differential effects on high- and low-value inventors.

Two remarks emerge from this analysis. First, \(\hat{v} \), and thus the set of low types that apply at least some of the time, does not depend on whether court challenges are credible (or, equivalently, whether they are available). In other words, court challenges have no effect on the extensive margin of bad applications (i.e., the interval of values over which the low types apply); they affect only the intensive margin (i.e., the probability that they apply). Like in the baseline model, the intuition is that the threat of challenges cannot completely deter a low type from applying, since this would lead his (Bayesian) competitor to refrain from challenging.

Second, any change in patent office fees will affect R&D investment decisions. The level of innovation investment (by both high and low types) is fully characterized by \(v^* \); clearly, higher fees raise \(v^* \) and reduce investment. (Note that a fee increase leads the set of types that invest to shrink in both dimensions of the idea space.)

We then have the following results.

Proposition 6. The cutoff on \(v \) above which high types apply is always weakly below \(\hat{v} \).

\[l(v) < \Delta_C(v) \] ensures that \(\hat{v} < \tilde{v} \).
the corresponding cutoff for low types: $v^* \leq \hat{v}$, with equality if either $e = 0$, or $\phi_A = 0$ and $e < 1$.

Proof. Because $\Delta(v)$ is an increasing function and the right-hand side of (13) weakly exceeds that of (12), we obtain $v^* \leq \hat{v}$. If $e = 0$, or if $\phi_A = 0$ and $e < 1$, the right-hand sides of the two expressions coincide and so $v^* = \hat{v}$. \hfill \square

The first result in Proposition 6 says that there cannot be a value v such that low types apply but high types do not. The reason is that the high type with $\kappa = \pi(v) + \varepsilon$ (invests and) applies for a patent if and only if $\Delta(v) \geq \phi_P + \phi_A + \varepsilon$. Letting $\varepsilon \to 0$, this is also the condition for low types to ever find applying worthwhile. The second result in Proposition 6 is the counterpart of Observation 1 from the simple model of Section 2. It says that, in the absence of either patent examination or pre-grant fees, we cannot deter low types with ideas of value v without also deterring high types with ideas of the same value. This is related to the fact that, as argued above, court challenges do not affect the extensive margin of bad applications. Thus the set of low types that apply at least some of the time when there is no examination is the same as when there is neither examination nor court review. Together with $v^* \leq \hat{v}$, this implies that for $e = 0$ the two cutoffs must coincide.

Proposition 7. Fix v^* and e. Then applications from low types are minimized by frontloading fees, i.e., setting $\phi_P = 0$ and $\phi_A = \Delta(v^*)$.

Proof. See Appendix A. \hfill \square

Proposition 7 is the counterpart of Observation 2 from Section 2. It says that, if we fix the level of innovation in the economy at v^* (and hence the sum of patent office
fees at $\phi_A + \phi_P = \Delta(v^*)$) and the examination intensity at some e, frontloading fees reduces the number of applications filed by low types. This is because the cutoffs \tilde{v} and \check{v} are increasing in ϕ_A when holding $\phi_A + \phi_P$ fixed – for the same reason as in the baseline model, namely, that low types prefer post-grant fees to pre-grant fees whereas high types are indifferent.34

7 Concluding remarks

This paper develops a framework to examine how governments can improve the quality of patent screening, incorporating four policy instruments: patent office examination, pre- and post-grant fees, and challenges in the courts. The analysis yields three key theoretical results. First, if the patent office makes no examination effort (registration system), or if the pre-grant fee is zero and examination is imperfect, complete screening cannot be achieved. Second, even if courts are mistake-free, they cannot eliminate all bad patents that are issued because in equilibrium not all such patents are challenged. This result raises serious doubts about over-reliance on the court system to weed out obvious patents. Third, when examination is not sufficiently rigorous to achieve complete screening, we show that a social planner would always frontload fees.

We simulate the model, calibrated on U.S. patent and litigation data, to identify key parameters and study the welfare effects of policy reforms. The simulations indicate that 75 percent or more of patent applications are low quality in the sense that they are made on inventions that would be developed even without patent protection. At the same time, the patent office only screens out about 30 percent of these low-quality applications. Our simulations imply that between 65 and 81 percent of granted patents are invalid, depending on the specification of the courts. These findings highlight the crisis in patent screening and the need to develop effective policies to address it. The simulations show that intensifying patent office examination, frontloading patent fees, and introducing post-grant review (or reducing litigation costs by other means) are all likely to generate welfare gains, while adopting a pure registration system would reduce welfare.

We believe the framework developed in this paper can be used to study the welfare impacts of legal reforms, such as adopting the ‘loser pays rule’ for litigation costs, changing the presumption of validity (evidentiary threshold) used by courts, and patent litigation insurance, all of which have featured prominently in the public debate. Our model can potentially provide a useful analytical platform for studying other patent

34As shown in the proof of Proposition 7, frontloading fees leaves $\check{\alpha}(v)$ unaffected. Hence, if \check{v} increases to \check{v}' and \tilde{v} to \tilde{v}', applications by low types decrease for $v \in [\check{v}, \check{v}')$ (from $\check{\alpha}(v)$ to 0) and $v \in [\tilde{v}, \tilde{v}')$ (from 1 to $\check{\alpha}(v)$) while remaining unchanged for all other values of v.

33
reforms as well. In principle, the simulations of the model, or suitable extensions of it, could also be calibrated for other patent systems. This might allow one to analyze the welfare effects of more ambitious, international patent reforms, such as harmonized screening.
References

Appendix A Proofs

Proposition 1. If \(\phi_P > \Delta - \phi_A/(1-e) \), the type-L inventor does not apply and the competitor does not challenge. If challenges are credible and \(\phi_P \leq \Delta - \phi_A/(1-e) \), there is a semi-separating equilibrium in which:

(i) the type-H inventor invests, applies, activates, and proposes \(F^H = \Delta_C \)

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities \(\alpha \) and \(1-\alpha \)), or
(b) the license fee to propose, \(F^L \in \{\Delta_C, l_C\} \) (probabilities \(y \) and \(1-y \)),

such that \((1-\hat{\lambda})\Delta_C = l_C \); he always activates

(iii) the competitor randomizes over the decision whether to challenge or not (probabilities \(x \) and \(1-x \)) if offered \(F = \Delta_C \) and never challenges if offered \(F = l_C \), with

\[
x = \begin{cases}
 \hat{x} = \frac{\Delta_C - l_C}{\Delta + l_I} & \text{for } \phi_P < l_C + m - \frac{\phi_A}{1-e} \\
 \hat{x} = \frac{\Delta - \phi_P - \phi_A/(1-e)}{\Delta + l_I} & \text{for } l_C + m - \frac{\phi_A}{1-e} \leq \phi_P \leq \Delta - \frac{\phi_A}{1-e}
\end{cases}
\]

This semi-separating equilibrium requires that the high type make nonnegative profit, \(\Delta - (k - \pi) - x l_I - \phi_A - \phi_P \geq 0 \).

Proof. We first derive the equilibrium behavior of type-L inventor and competitor assuming that the type-H inventor invests, applies, activates, and proposes \(F^H = \Delta_C \) in Lemma 1. We then show under what conditions type \(H \) indeed finds this behavior optimal in Lemma 2.

For the purposes of this lemma, let \(\rho \) denote the probability that type \(L \) activates the patent.

Lemma 1. Suppose (6) holds and the type-H inventor invests, applies, activates, and proposes \(F^H \). Then, the equilibrium behavior of the type-L inventor and the competitor can be characterized as follows:

(i) If \(\phi_P \geq \Delta - \phi_A/(1-e) \) [Region 3], the type-L inventor does not apply (\(\alpha = 0 \)), and the competitor does not challenge (\(x = 0 \)). If granted a patent the type-L inventor would always propose \(F^H \) (\(y = 1 \)).
(ii) If $\phi_P < \Delta - \phi_A/(1-e)$, the type-L inventor applies with strictly positive probability $(\alpha > 0)$ and randomizes such that

$$\left(1 - \frac{\lambda}{\lambda + (1 - \lambda)(1-e)\rho y}\right) \Delta_C = l_C.$$ \hspace{1cm} (15)

The competitor always accepts when offered $F = l_C$ ($x = 0$); she always challenges the patent when offered $F \notin \{l_C, F^H\}$ ($x = 1$). When offered $F = F^H$ she randomizes between accepting and challenging. Specifically:

(a) for $\phi_P < l_C + m - \phi_A/(1-e)$ [Region 1], the type-L inventor chooses $\alpha = \rho = 1$ and $y \in (0,1)$ solving (15). The competitor challenges with probability x such that

$$(1 - x)\Delta - xl_I = l_C + m; \hspace{1cm} (16)$$

(b) for $\phi_A > 0$ and $l_C + m - \phi_A/(1-e) < \phi_P < \Delta - \phi_A/(1-e)$ [Region 2], the type-L inventor chooses $\rho = y = 1$ and $\alpha \in (0,1)$ solving (15). The competitor challenges with probability x such that

$$(1 - e)[(1-x)\Delta - xl_I - \phi_P] = \phi_A; \hspace{1cm} (17)$$

(c) for $\phi_A = 0$ and $l_C + m < \phi_P < \Delta$, the type-L inventor chooses $y = 1$ and $(\alpha, \rho) \in [0,1]^2$ solving (15). The competitor challenges with probability x such that

$$(1 - x)\Delta - xl_I = \phi_P. \hspace{1cm} (18)$$

Proof of Lemma 1. For $\phi_P \geq \Delta - \phi_A/(1-e)$, type L’s payoff from applying is weakly less than his payoff from not applying even if there are no challenges, so $(\alpha = 0, x = 0)$ is an equilibrium, establishing (i). (This equilibrium is unique for $\phi_P > \Delta - \phi_A/(1-e)$.) In what follows, we first show that for $\phi_P < \Delta - \phi_A/(1-e)$, there is no equilibrium in which $\alpha = 0$, $\rho = 0$, or $y = 0$, that there is none in which $\alpha = \rho = y = 1$, and that there is also none in which $x = 0$ or $x = 1$, implying that the equilibrium must be in mixed strategies. We then prove the more specific claims made in (ii.a)-(ii.c).

Suppose first there were an equilibrium with $\alpha = 0$, $\rho = 0$, or $y = 0$ when $\phi_P < \Delta - \phi_A/(1-e)$. Then the competitor’s belief when observing $F^H = \Delta_C$ would be $\hat{\lambda} = 1$, and hence she would not challenge. But this means that the type-L inventor could secure a strictly positive expected payoff of $(1-e)(\Delta - \phi_P - \phi_A) > 0$ by applying, activating and offering F^H, contradicting the optimality of $\alpha = 0$ or $\rho = 0$. Moreover, by offering $F = \Delta_C$ type L obtains a higher payoff than by offering $F = l_C$ (because $\Delta_C > l_C$), contradicting the optimality of $y = 0$. Hence, under the assumed condition
on ϕ_P, in any equilibrium we must have $\alpha > 0$, $\rho > 0$, and $y > 0$. Next, suppose there were an equilibrium with $\alpha = \rho = y = 1$. Then $\hat{\lambda} = \Delta(e)$, and by (6), the challenger would always challenge. But then type L would be better off deviating in some dimension. (If $\phi_P > 0$, type L would be better off not activating or not applying. If $\phi_P = 0 < l_C + m$, type L would be better off offering $0 < F \leq l_C$.)

Now consider the competitor’s decision to challenge. If there were an equilibrium in which she never challenges ($x = 0$), then all type-L inventors would apply, activate and offer F^H ($\alpha = \rho = y = 1$). But in that case, (6) implies that the competitor would strictly prefer to challenge. If there were an equilibrium in which she always challenges ($x = 1$), then type L would prefer not to apply, in which case the competitor would be better off not challenging.

Hence, the equilibrium must be in mixed strategies. For the competitor to be indifferent between challenging and not, his beliefs about the type of inventor he faces must be such that the payoff from challenging is the same as the payoff from not challenging, i.e., $(1 - \hat{\lambda})_C = l_C$. Using the definition of $\hat{\lambda}$ yields (15). The conditions for the type-L inventor to be indifferent depend on parameters and are specified below.

Claim (ii.a) [$\phi_P < l_C + m - \phi_A/(1 - e)$]: Because the competitor always accepts the offer $F = l_C$, the type-L inventor can guarantee himself a payoff of $l_C + m$ following activation. Hence, if $\phi_P < l_C + m$, type L strictly prefers activating to not activating, implying $\rho = 1$. By the same argument, $\phi_P < l_C + m - \phi_A/(1 - e)$ implies that type L strictly prefers applying to not applying, so $\alpha = 1$. The only randomization variable that remains is y. For the type-L inventor to be indifferent between offering $F = l_C$ and $F = \Delta_C$, both must procure him the same payoff. This requires $\pi + l_C + m = \pi + (1 - x)\Delta - xl_I$, or (16).

Claim (ii.b) [$\phi_A > 0$ and $l_C + m - \phi_A/(1 - e) < \phi_P < \Delta - \phi_A/(1 - e)$]: Because $l_C + m - \phi_A/(1 - e) < \phi_P$, the type-$L$ inventor cannot break even offering $F = l_C$; hence, $y = 1$. To see that type L will necessarily randomize over the application decision rather than the activation decision, suppose to the contrary $\rho < 1$. This would require $(1 - x)\Delta - xl_I = \phi_P$. But in that case, type L’s payoff from applying would be zero, and given $\phi_A > 0$ he would prefer not to apply. Hence, $\rho = 1$. The only randomization variable that remains is α. For type L to be indifferent between applying and not, it must be that $\pi = \pi + (1 - e)[(1 - x)\Delta - xl_I - \phi_P] - \phi_A$, or (17).

Claim (ii.c) [$\phi_A = 0$ and $l_C + m < \phi_P < \Delta$]: Because $\phi_P > l_C + m$, the inventor will never offer $F = l_C$, as he would be sure to make a loss then. Hence, $y = 1$. In any equilibrium in which the type-L inventor is indifferent between activating and not, which requires $\pi = \pi + (1 - e)[(1 - x)\Delta - xl_I - \phi_P]$, or (18), his payoff from applying for a patent will be zero. Because $\phi_A = 0$, he will also be indifferent between applying and
not. Hence, any combination of α and ρ which (given $y = 1$) solves (15) constitutes an equilibrium.

Remark: For the case $\phi_A = (1 - e)(\Delta - \phi_P)$, type L is indifferent between applying and not. Thus in principle there is also an equilibrium in which type L applies with strictly positive probability $\alpha > 0$ satisfying (15) and the competitor never challenges ($x = 0$). We ignore this equilibrium as it seems uninteresting and concerns a knife-edge case.

For the purposes of the next lemma, let

$$
\phi \equiv \left(1 - \frac{e}{e}\right)\left[k - \pi - \frac{(\Delta_C - l_C)\Delta}{\Delta + l_I}\right]
$$

$$
\bar{\phi} \equiv \left(1 - \frac{e}{e}\right)[k - \pi].
$$

Lemma 2. Suppose (6) holds. The type H inventor invests, applies, activates, and proposes $F^H = \Delta_C$ if $\phi_P \leq h(\phi_A)$, where

$$
\begin{align*}
 h(\phi_A) = \\
 \begin{cases} \\
 \Delta - (k - \pi) - \frac{(\Delta_C - l_C)l_I}{\Delta + l_I} - \phi_A & \text{for } \phi_A \leq \phi \\
 \Delta - \left(1 + \frac{l_I}{\Delta}\right)(k - \pi) - \left(1 - \frac{el_I}{(1 - e)\Delta}\right)\phi_A & \text{for } \phi < \phi_A \leq \bar{\phi} \\
 \Delta - (k - \pi) - \phi_A & \text{for } \phi_A > \bar{\phi},
 \end{cases}
\end{align*}
$$

(19)

and does not invest otherwise.

Proof of Lemma 2. The type-H inventor’s payoff from investing, applying, activating and proposing $F^H = \Delta_C$ is

$$
\Pi^H = \Delta - (k - \pi) - xl_I - \phi_P - \phi_A.
$$

Consider first the case where $\phi_P < l_C + m - \phi_A/(1 - e)$, so that $x = \tilde{x}$. Then $\Pi^H \geq 0$ if and only if

$$
\phi_P \leq \Delta - (k - \pi) - \frac{(\Delta_C - l_C)l_I}{\Delta + l_I} - \phi_A.
$$

(20)

Next, consider the case where $\phi_P > \Delta - \phi_A/(1 - e)$, so that $x = 0$. Then, $\Pi^H \geq 0$ if and only if

$$
\phi_P \leq \Delta - (k - \pi) - \phi_A.
$$

(21)

Finally, consider the intermediate case where $l_C + m - \phi_A/(1 - e) < \phi_P < \Delta - \phi_A/(1 - e)$, so that $x = \hat{x}$. Then $\Pi^H \geq 0$ if and only if

$$
\phi_P \leq \Delta - (k - \pi) - \frac{l_I(\Delta - \phi_P - \phi_A/(1 - e))}{\Delta + l_I} - \phi_A
$$

(19)
\[\Leftrightarrow \quad \phi_P \leq \Delta - \left(1 + \frac{l_I}{\Delta} \right) (k - \pi) - \left(1 - \frac{e l_I}{(1-e) \Delta} \right) \phi_A. \quad (22) \]

The threshold \(\phi \) is obtained by equalizing the right-hand sides of \(\phi_P < l_C + m - \phi_A / (1 - e) \) and (20):

\[l_C + m - \phi_A / (1 - e) = \Delta - (k - \pi) - \frac{(\Delta_C - l_C) l_I}{\Delta + l_I} - \phi_A. \]

Solving for \(\phi_A \) yields \(\phi \). The threshold \(\phi \) is obtained by equalizing the right-hand sides of \(\phi_P < \Delta - \phi_A / (1 - e) \) and (21):

\[\Delta - \phi_A / (1 - e) = \Delta - (k - \pi) - \phi_A. \]

Solving for \(\phi_A \) yields \(\phi \).

What remains to be shown is that type \(H \) finds it optimal to propose \(F^H = \Delta_C \), knowing that this results in a challenge with probability \(x \). His best deviation is to \(F = l_C \), which is the highest license fee that would avoid a challenge; all other license fee offers are either rejected or lead to a challenge with probability one. To see that deviating to \(F = l_C \) is unprofitable for type \(H \), note that in any equilibrium with \(x > 0 \), type \(L \) is either indifferent between \(\Delta_C \) and \(l_C \) or strictly prefers \(\Delta_C \). Because type \(H \) knows that he will win in court while type \(L \) knows he will lose, it follows that type \(H \) must strictly prefer \(\Delta_C \) over \(l_C \).

This is the unique Perfect Bayesian equilibrium that survives application of the D1 refinement. For brevity, we omit the proof of uniqueness; it is available from the authors upon request.

Proposition 2. Suppose the type-\(H \) inventor invests, i.e., \(\Pi^H \geq 0 \), and challenges are credible. Then:

(i) An increase in \(\phi_A \) or \(\phi_P \) weakly decreases applications by type \(L \) (\(\alpha \)), weakly decreases the rate of challenges (\(x \)), and weakly increases the probability that type \(L \) charges the high license fee (\(y \)).

(ii) An increase in \(e \) has ambiguous effects on applications by type \(L \) (\(\alpha \)), weakly decreases the rate of challenges (\(x \)), and weakly increases the probability that type \(L \) charges the high license fee (\(y \)).

Proof. Claim (i): Within each of the three regions shown in Figure 2, \(\alpha \) and \(y \) are constant with respect to \(\phi_A \) and \(\phi_P \) (\(\tilde{\alpha} \) and \(\tilde{y} \) do not depend on the fees). An increase in \(\phi_A \) or \(\phi_P \) can move the equilibrium from region 1 to region 2, in which case \(\alpha \) decreases from \(\alpha = 1 \) to \(\alpha = \tilde{\alpha} < 1 \) and \(y \) increases from \(y = \tilde{y} \) to \(y = 1 \), or from region
2 to region 3, in which case α decreases from $\alpha = \hat{\alpha}$ to $\alpha = 0$ and y remains constant. The rate of challenges x is constant with respect to ϕ_A and ϕ_P within region 1 (\tilde{x} does not depend on the fees). Within region 2, x is decreasing in ϕ_A and ϕ_P (differentiating $\tilde{x}(\phi_A, \phi_P)$ yields $\partial \tilde{x}/\partial \phi_A = -1/[(1-e)(\Delta + I)] \leq 0$ and $\partial \tilde{x}/\partial \phi_P = -1/(\Delta + I_l) < 0$).

What remains to be shown is that $\tilde{x} \geq \tilde{x}(\phi_A, \phi_P)$ for any combination of fees in region 2, i.e., (ϕ_A, ϕ_P) such that $l_C + m - \phi_A/(1-e) \leq \phi_P \leq \Delta - \phi_A/(1-e)$. Since \tilde{x} is decreasing in ϕ_A and ϕ_P, its maximum is attained for some combination of fees such that $l_C + m - \phi_A/(1-e) = \phi_P$. For any (ϕ_A, ϕ_P) satisfying this equality we have

$$\tilde{x}(\phi_A, \phi_P)|_{l_C+m-\phi_A/(1-e)=\phi_P} = \frac{\Delta C - l_C}{\Delta + I_l} = \hat{x}.$$

Hence, $\tilde{x}(\phi_A, \phi_P) \leq \hat{x}$ for $l_C + m - \phi_A/(1-e) \leq \phi_P$.

Claim (ii): Within region 1, α and x are constant with respect to e ($\alpha = 1$ and $x = \hat{x}$, neither of which depends on e), while y increases with e: differentiating \tilde{y} with respect to e yields

$$\frac{\partial \tilde{y}}{\partial e} = \frac{\lambda l_C}{(1-\lambda)(\Delta C - l_C)(1-e)^2} > 0.$$

An increase in e can move the equilibrium from region 1 to region 2, in which case α decreases from $\alpha = 1$ to $\alpha = \hat{\alpha} < 1$, x decreases from $x = \hat{x}$ to $x = \tilde{x}$ (the inequality having been established in the proof of Claim (i)), and y increases from $y = \hat{y}$ to $y = 1$.

Within region 2, α is increasing and x is decreasing in e: differentiating $\hat{\alpha}$ and \hat{x} with respect to e yields

$$\frac{\partial \hat{\alpha}}{\partial e} = \frac{\lambda l_C}{(1-\lambda)(\Delta C - l_C)(1-e)^2} > 0,$$

$$\frac{\partial \hat{x}}{\partial e} = -\frac{\phi_A}{(1-e)^2(\Delta + I_l)} \leq 0;$$

y is constant in e ($y = 1$). An increase in e can move the equilibrium from region 2 to region 3, in which case α decreases from $\alpha = \hat{\alpha}$ to $\alpha = 0$ and x from $x = \hat{x}$ to $x = 0$, while y remains constant at $y = 1$. □

Proposition 4. Suppose $\underline{e} < e < \bar{e}$. Welfare maximization always entails fees such that $\phi_A \geq (1-e)(l_C + m - \phi_P)$ (region 2). If $\Delta_C > (l_C/(l_C + I_l))D$, welfare is maximized by setting $\phi_P = 0$ and ϕ_A such that $\Pi^H = 0$, thus minimizing challenges. If $\Delta_C < (l_C/(l_C + I_l))D$, welfare is maximized by setting $\phi_A = (1-e)(l_C + m - \phi_P)$ and $0 \leq \phi_P \leq \min\{l_C + m, [\Delta - (k - \pi) - \tilde{x}I - (1-e)(l_C + m)]/e\}$, thus maximizing challenges.

Proof. Notice that within region 1, welfare does not depend on either ϕ_A or ϕ_P, as $\alpha = 1$, $x = \hat{x}$, and $y = \hat{y}$ are all constant in ϕ_A and ϕ_P. Similarly, within region 2, welfare depends on ϕ_A and ϕ_P only through $x = \hat{x}(\phi_A, \phi_P)$ (which we make explicit
by including the fees as arguments) and not through $\alpha = \hat{\alpha}$ or $y = 1$. Thus the welfare maximization problem is reduced to a choice between $W_1^* \equiv W(1, \hat{x}, \hat{y})$ and $W_2^* \equiv \max_{\phi_A \geq 0, \phi_P \geq 0} W(\alpha, \hat{x}(\phi_A, \phi_P), 1)$ subject to $l_C + m - \phi_A / (1 - e) \leq \phi_P \leq h(\phi_A)$, where $h(\phi_A)$ was defined in the proof of Lemma 2 (recall that $\phi_P \leq h(\phi_A) \Leftrightarrow \Pi^H \geq 0$).

Notice also that αy is the same in regions 1 and 2, as $\alpha y = \hat{y}$ in region 1, $\alpha y = \hat{\alpha}$ in region 2, and $\hat{\alpha} = \hat{\hat{y}}$.

The proof proceeds as follows. We first show that, keeping αy fixed, welfare is decreasing in α. Together with the fact that $\hat{x} \geq \hat{x}(\phi_A, \phi_P)$ for any (ϕ_A, ϕ_P) in region 2, with equality for $\phi_A = (1 - e)(l_C + m - \phi_P)$ (see the proof of Proposition 2), this implies that $W_2^* > W_1^*$, so that the welfare-maximizing combination of fees lies in region 2. Second, we show that fixing αy (and thus λ) at its equilibrium value in regions 1 and 2, welfare is decreasing in x if and only if $\Delta_C > (l_C / (l_C + l_I))D$. Third, we show that $h'(<\phi_A) < 0$ in region 2 for $e < e < \hat{e}$, which is a useful property for what follows.

We then maximize welfare over all combinations of fees lying within region 2.

Claim 1: For any $(\alpha, y) \in (0, 1]^2$ and $(\alpha', y') \in (0, 1]^2$ such that $\alpha y = \alpha' y'$, $W(\alpha, x, y) \geq W(\alpha', x, y')$ if and only if $\alpha \leq \alpha'$. Rewriting W we have

\[W(\alpha, x, y) = 2\pi + S - \lambda(D + x(l_C + l_I) + k + \gamma(e)) + (1 - \lambda)((1 - e)\alpha y x(D - (l_C + l_I)) - \alpha((1 - e)D + \gamma(e))). \]

(23)

For $\alpha y = \alpha' y'$, we have $W(\alpha, x, y) - W(\alpha', x, y') = (1 - \lambda)(\alpha' - \alpha)(\alpha y x D - (l_C + l_I)) \geq 0$ if and only if $\alpha \leq \alpha'$.

Claim 2: $(\partial / \partial x)W(\alpha, x, y)|_{\alpha y = \hat{\alpha}} < 0$ if and only if $\Delta_C > (l_C / (l_C + l_I))D$. We have

\[\frac{\partial W}{\partial x} = -\lambda(l_C + l_I) + (1 - \lambda)(1 - e)\alpha y x[D - (l_C + l_I)]
= (1 - \lambda)(1 - e)\alpha y x D - \lambda(1 - \lambda)(1 - e)\alpha y x(l_C + l_I). \]

Using the definition of $\hat{\lambda}$ in (5), we can rewrite this as

\[\frac{\partial W}{\partial x} = \lambda(1 - \lambda)(1 - e)\alpha y x \left[(1 - \hat{\lambda})D - (l_C + l_I)\right]. \]

By Proposition 1, in the equilibrium in regions 1 and 2 we have $1 - \hat{\lambda} = l_C / \Delta_C$. Hence,

\[\frac{\partial W}{\partial x} < 0 \iff \frac{l_C}{\Delta_C}D - (l_C + l_I) < 0 \iff \Delta_C > \left(\frac{l_C}{l_C + l_I}\right)D. \]

Claim 3: $h'(<\phi_A) < 0$ for $l_C + m - \phi_A / (1 - e) \leq \phi_P \leq \Delta - \phi_A / (1 - e)$ and $e < e < \hat{e}$. From (19) we have that, in region 2,

\[h'(<\phi_A) = \frac{-\frac{1}{(1 - e)}(\Delta - e l_I)}{\Delta}, \]

(24)
which is negative if and only if $(1 - e)\Delta > eI$. To establish that this condition holds, we first show that $e > \bar{e}$ implies that $h(\bar{e}) > 0$. By definition of \bar{e},

$$h(\bar{e}) = \Delta - \bar{x}I - (k - \pi) - \bar{e}$$

$$= l_C + m - \frac{\bar{e}}{1 - e}. \quad (25)$$

Replacing \bar{e} in (26) we have that

$$h(\bar{e}) = l_C + m - \frac{1}{e} [l_C + m - \Delta + \bar{x}I + k - \pi] > 0$$

$$\Leftrightarrow (1 - e)(l_C + m) < \Delta - \bar{x}I - (k - \pi)$$

$$\Leftrightarrow e > \bar{e}.$$

Next, replacing \bar{e} in (25) yields

$$h(\bar{e}) = \Delta - (k - \pi) - \bar{x}I - \frac{1 - e}{e} [k - \pi - \bar{x}\Delta]$$

$$= \Delta - \frac{k - \pi}{e} + \bar{x}I (1 - e)\Delta - eI].$$

Since $\Delta - (k - \pi)/e < 0$ by the assumption that $e < \bar{e}$ and we have just established that $h(\bar{e}) > 0$ when $e > \bar{e}$, it must be that $(1 - e)\Delta > eI$, and hence that $h'(\phi_A) < 0$ when $\bar{e} < e < \bar{e}$.

Having established these claims, we now solve for the welfare-maximizing fees. The planner’s problem can be written as

$$\max_{\phi_A \geq 0, \phi_P \geq 0} W(\tilde{\alpha}, \tilde{x}(\phi_A, \phi_P), 1)$$

subject to

$$\begin{cases}
\phi_A \geq (1 - e)(l_C + m - \phi_P) & [\mu_1] \\
\phi_P \leq h(\phi_A) & [\mu_2]
\end{cases}$$

where μ_1 and μ_2 are the multipliers associated with the constraints. The first-order conditions are

$$\frac{\partial W}{\partial x} \frac{\partial x}{\partial \phi_A} + \mu_1 + \mu_2 h'(\phi_A) = 0 \quad (27)$$

$$\frac{\partial W}{\partial x} \frac{\partial x}{\partial \phi_P} + \mu_1 (1 - e) - \mu_2 = 0. \quad (28)$$

We have to distinguish two cases: $\partial W/\partial x < 0$ and $\partial W/\partial x > 0$.

Case 1: $\partial W/\partial x < 0$. Combining $h'(\phi_A) < 0$ with the fact that $\partial W/\partial x < 0$ and $\partial \bar{x}/\partial \phi_A < 0$, (27) implies $\mu_2 > 0$, so the constraint $\phi_P \leq h(\phi_A)$ must be binding at the optimum. Using (27) to replace μ_1, (28) becomes

$$\frac{\partial W}{\partial x} \frac{\partial x}{\partial \phi_P} - (1 - e) \left(\frac{\partial W}{\partial x} \frac{\partial x}{\partial \phi_A} + \mu_2 h'(\phi_A) \right) - \mu_2 = \frac{\partial W}{\partial \phi_P} \left(\frac{\partial x}{\partial \phi_P} - (1 - e) \frac{\partial \bar{x}}{\partial \phi_A} \right) - \mu_2 (1 - e) h'(\phi_A) + 1 \right). \quad (29)$$
Noting that $\partial \bar{x}/\partial \phi_P = (1-e)\partial \bar{x}/\partial \phi_A$ and substituting for $h'(\phi_A)$ from (24), this expression simplifies to

$$-\mu_2 \left[1 - \frac{(1-e)\Delta - e l }{\Delta} \right] = -\mu_2 \frac{e(\Delta + l)}{\Delta} < 0.$$

Hence, when evaluated at the binding constraint $\phi_P \leq h(\phi_A)$, the objective is decreasing in ϕ_P. It follows that the optimal solution is such that $\phi_P = 0$ and $h(\phi_A) = \phi_P = 0$ (which is equivalent to $\Pi^H = 0$) as claimed.

Case 2: $\partial W/\partial x > 0$. Combining $h'(\phi_A) < 0$ with the fact that $\partial W/\partial x > 0$ and $\partial \bar{x}/\partial \phi_A < 0$, (27) implies $\mu_1 > 0$, so the constraint $\phi_A \geq (1-e)(l_C + m - \phi_P)$ must be binding at the optimum. We have

$$W(\alpha, \bar{x}(\phi_A, \phi_P), 1)_{|\phi_A = (1-e)(l_C + m - \phi_P)} = W(\alpha, \bar{x}, 1),$$

which is constant in (ϕ_A, ϕ_P). Hence, any combination of fees such that $\phi_A = (1-e)(l_C + m - \phi_P)$, $\phi_A \geq 0$, $\phi_P \geq 0$, and $\phi_P \leq h(\phi_A)$ is a solution. Combining the three inequalities and noting that $l_C + m - \phi_A/(1-e)$ and $h(\phi_A)$ intersect at $\bar{\phi}$ yields $0 \leq \phi_P \leq \min\{l_C + m, h(\bar{\phi})\} = \min\{l_C + m, [\Delta - (k-\pi) - \bar{x}l - (1-e)(l_C + m)]/e\}$. □

Proposition 7. Fix v^* and e. Then applications from low types are minimized by frontloading fees, i.e., setting $\phi_P = 0$ and $\phi_A = \Delta(v^*)$.

Proof. Fixing v^*, we have $\phi_A + \phi_P = \Delta(v^*)$. Then \hat{v} and \tilde{v} solve

$$\Delta(\hat{v}) = \Delta(v^*) + \left(\frac{e}{1-e} \right) \phi_A$$

$$l(\tilde{v}) + m(\tilde{v}) = \Delta(v^*) + \left(\frac{e}{1-e} \right) \phi_A.$$

Because by assumption Δ, l, and m are increasing functions, \hat{v} and \tilde{v} increase with ϕ_A. Given the nonnegativity constraint on ϕ_P, \hat{v} and \tilde{v} are thus maximized for $\phi_A = \Delta(v^*)$ and $\phi_P = 0$.

To complete the proof, we show that $\alpha(v)$ depends only on the sum of pre- and post-grant fees and not on how this sum is apportioned. For the competitor to be indifferent, it must be that, for all v, $(1-\hat{\lambda}(v))\Delta_C(v) = l(v)$. Using the expression for $\hat{\lambda}(v)$ in footnote 32, $\alpha(v)$ is given by the α that solves

$$\left[1 - \frac{G_v(\pi(v) + \Delta(v) - \phi_A - \phi_P) - G_v(\pi(v))}{G_v(\pi(v) + \Delta(v) - \phi_A - \phi_P) - G_v(\pi(v)) + (1-e)\alpha y G_v(\pi(v))} \right] \Delta_C(v) = l(v).$$

Thus, for $\phi_A + \phi_P = \Delta(v^*)$,

$$\hat{\alpha}(v) = \left(\frac{G_v(\pi(v) + \Delta(v) - \Delta(v^*)) - G_v(\pi(v))}{(1-e)G_v(\pi(v))} \right) \left(\frac{l(v)}{\Delta_C(v) + l(v)} \right)$$

is invariant with respect to ϕ_A and ϕ_P. □
Appendix B A more general screening technology

In this appendix, we introduce a more general screening technology that allows for both type-I and type-II errors at both the level of the patent office and the courts, and we examine how our results extend to that case. Suppose the patent office and the courts review applications with intensity e_1 and e_2, respectively. The intensity of review equals the probability that they find out the inventor’s true type. With probability $1 - e_i$, $i = 1, 2$, they find no strong evidence either way, in which case the patent office allows the application with probability q_1 while the courts uphold the patent with probability q_2. This leads to stage-i probabilities of acceptance and rejection for each type of inventor given in Table B.1, with $i = 1, 2$, stage 1 corresponding to patent office review and stage 2 corresponding to court review. Our basic model is a special case of this setup with $e_1 = e_2 = 1$, $q_1 = 1$, and q_2 is indeterminate. Assume $(1 - e_2)(1 - q_2)\Delta_C < l_C < (e_2 + (1 - e_2)(1 - q_2))\Delta_C$; otherwise the competitor either would not want to challenge even when certain of facing a type-L inventor or would want to challenge even when certain of facing a type-H inventor.

Table B.1: Probability of acceptance and rejection at review stage i by type

<table>
<thead>
<tr>
<th>Type</th>
<th>Acceptance</th>
<th>Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>$e_i + (1 - e_i)q_i$</td>
<td>$(1 - e_i)(1 - q_i)$</td>
</tr>
<tr>
<td>L</td>
<td>$(1 - e_i)q_i$</td>
<td>$e_i + (1 - e_i)(1 - q_i)$</td>
</tr>
</tbody>
</table>

B.1 No challenges

Consider first the case where challenges are not possible. Then the two types of inventors have the following expected payoff from investing and applying:

$$\Pi^H = (e_1 + (1 - e_1)q_1)(\pi + \Delta - \phi_P) + (1 - e_1)(1 - q_1)\pi - k - \phi_A$$

$$\Pi^L = (1 - e_1)q_1(\pi + \Delta - \phi_P) + (e_1 + (1 - e_1)(1 - q_1))\pi - \phi_A.$$

Fixing the sum of fees, $\phi_A + \phi_P$, both types now prefer post-grant to pre-grant fees. However, type L has a stronger preference for post-grant fees than type H. To see this, we can compute the slope of the iso-profit lines:

$$\frac{\partial \Pi^H}{\partial \phi_A} = \frac{1}{e_1 + (1 - e_1)q_1}$$

$$\frac{\partial \Pi^L}{\partial \phi_A} = \frac{1}{(1 - e_1)q_1}.$$

For any $e_1 > 0$, type L’s iso-profit lines are steeper than type H’s. To obtain a one dollar reduction in ϕ_A, the type-L inventor is willing to accept a $1/[(1 - e_1)q_1]$ dollar
increase in \(\phi_P \), while the type-\(L \) inventor is willing to accept only a smaller increase of \(1/[(e_1 + (1 - e_1)q_1] \) dollars.

The type-\(L \) inventor invests if and only \(\Pi^H \geq 0 \). The type-\(L \) inventor always invests; he applies for a patent if \(\Pi^L \geq \pi \). Thus the condition for full screening is \(\Pi^H \geq 0 \geq \Pi^L - \pi \), or

\[
(e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq \phi_A \geq (1 - e_1)q_1(\Delta - \phi_P).
\]

A necessary condition is

\[
e_1 \geq \frac{k - \pi}{\Delta}.
\]

That is, the minimum examination intensity required to achieve full screening in the absence of court challenges is the same as in the basic model.

B.2 Challenges

Now consider the possibility of court challenges. Suppose type \(H \) invests and applies; moreover, suppose that if he is successful in obtaining a patent, he activates it and charges a license fee \(F^H \). Type \(H \)’s expected payoff then is

\[
\Pi^H = (e_1 + (1 - e_1)q_1)[x[(e_2 + (1 - e_2)q_2)(\pi + \Delta) + (1 - e_2)(1 - q_2)\pi - l_I]
+ (1 - x)(\pi + m + F^H) - \phi_P] + (1 - e_1)(1 - q_1)\pi - k - \phi_A,
\]

where \(x \) is the rate of challenges given \(F^H \). The competitor’s belief that an activated patent is valid when a license is offered at fee \(F^H \) is

\[
\hat{\lambda} = \frac{\lambda(e_1 + (1 - e_1)q_1)}{\lambda(e_1 + (1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1 \alpha y}.
\]

The lower bound of \(\hat{\lambda} \) is attained at \(\alpha y = 1 \) and given by

\[
\hat{\lambda} = \frac{\lambda(e_1 + (1 - e_1)q_1)}{\lambda(e_1 + (1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1}.
\]

Challenges are credible if and only if

\[
\pi - \Delta_C \leq \hat{\lambda}[(e_2 + (1 - e_2)q_2)(\pi - \Delta_C) + (1 - e_2)(1 - q_2)\pi]
+ (1 - \hat{\lambda})[(1 - e_2)q_2(\pi - \Delta_C) + (e_2 + (1 - e_2)(1 - q_2))\pi] - l_C
\]

or

\[
[1 - (1 - e_2)q_2 - e_2 \hat{\lambda}]\Delta_C \geq l_C.
\]

When challenges are not credible, the outcome is the same as in the absence of challenges (see the previous subsection). The equilibrium when challenges are credible is characterized in the following proposition.
Proposition 8. Consider the generalized screening technology specified in Table B.1. If challenges are credible and $\phi_P \leq \Delta - \phi_A / ((1 - e_1) q_1)$, there is a semi-separating equilibrium in which:

(i) the type-H inventor invests, applies, activates, and proposes $F_H = \Delta_C$;

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities α and $1 - \alpha$), or

(b) the license fee to propose, $F_L \in \{ \Delta_C, l_C + (1 - e_2) q_2 \Delta_C \}$ (probabilities y and $1 - y$), such that $[\lambda(1 - e_2)(1 - q_2) + (1 - \lambda)(e_2 + (1 - e_2)(1 - q_2))] \Delta_C = l_C$; he always activates;

(iii) the competitor randomizes over the decision whether to challenge or not (probabilities x and $1 - x$) if offered $F = \Delta_C$ and never challenges if offered $F = l_C + (1 - e_2) q_2 \Delta_C$, with

$$x = \begin{cases}
\hat{x} & \text{for } \phi_P \leq l_C + m + (1 - e_2) q_2 \Delta_C - \frac{\phi_A}{(1 - e_1) q_1} \\
\hat{x} & \text{for } l_C + m + (1 - e_2) q_2 \Delta_C - \frac{\phi_A}{(1 - e_1) q_1} < \phi_P \leq \Delta - \frac{\phi_A}{(1 - e_1) q_1};
\end{cases}$$

where

$$\hat{x} = \frac{(e_2 + (1 - e_2)(1 - q_2)) \Delta_C - l_C}{(e_2 + (1 - e_2)(1 - q_2)) \Delta + l_I},$$

$$\hat{x} = \frac{\Delta - \phi_P - \phi_A / [(1 - e_1) q_1]}{(e_2 + (1 - e_2)(1 - q_2)) \Delta + l_I},$$

provided $(e_1 + (1 - e_1) q_1) [(1 - x(1 - e_2)(1 - q_2)) \Delta - x l_I - \phi_P] - (k - \pi - \phi_A \geq 0$. If $\phi_P > \Delta - \phi_A / ((1 - e_1) q_1)$, the type-$L$ inventor does not apply and the competitor does not challenge.

Proof. The proof is similar to that of Proposition 1; we therefore focus on the key points here. Suppose type H invests, applies, activates and charges $F_H = \Delta_C$. Consider the behavior of type L in the case where challenges are credible, i.e., (32) holds, and fees are sufficiently low as to make applying and activating profitable (i.e., $\alpha = 1$). Let us look for an equilibrium in which type L randomizes over the license fee F_L as follows:

$$F_L = \begin{cases}
\Delta_C & \text{with probability } y \\
\tilde{F} & \text{with probability } 1 - y,
\end{cases}$$

where \tilde{F} is chosen such that the competitor does not find it worthwhile to challenge.
The competitor’s beliefs on the equilibrium path are $\tilde{\lambda}(F^H) = \hat{\lambda}$ and $\tilde{\lambda}(\tilde{F}) = 0$. The out-of-equilibrium belief most likely to support the equilibrium is $\tilde{\lambda}(F) = 0$ for $F \neq F^H$, \tilde{F}. For the competitor to refrain from challenging when observing $F \neq F^H$ despite assigning probability 1 to the patent being invalid, it must be that

$$(1 - e_2)q_2(\pi - \Delta_C) + (e_2 + (1 - e_2)(1 - q_2))\pi - l_C \leq \pi - F.$$

The highest fee that satisfies this inequality is

$$F = l_C + (1 - e_2)q_2\Delta_C.$$

Let $s(F) \in [0, 1]$ denote the competitor’s probability of challenging the patent when observing a license fee offer F. Sequential rationality requires $s(F) = 0$ for $F \leq \bar{F}$ and $s(F) = 1$ for $F > \bar{F}$, $F \neq F^H$. Thus, $\tilde{F} = \bar{F}$. We also have $s(F^H) = \lambda$, which depends on $\hat{\lambda}$. For the type-L inventor to be indifferent between offering F^H and \bar{F}, it must be that

$$\pi + m + \bar{F} = x[(1 - e_2)q_2(\pi + \Delta) + (e_2 + (1 - e_2)(1 - q_2))\pi - l_I] + (1 - x)(\pi + m + F^H).$$

Replacing \bar{F} and F^H yields

$$x = \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta_C - l_C}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_I} = \hat{x}.$$

For the competitor to be willing to randomize between challenging and not, it must be that (31) holds with equality when replacing $\hat{\lambda}$ by $\hat{\lambda}$, i.e.,

$$(1 - (1 - e_2)q_2 - e_2\hat{\lambda})\Delta_C = l_C. \quad (33)$$

Finally, we need to check that the type-H inventor has no incentive to deviate. The best deviation would be to $F = \bar{F}$. But since x is chosen so as to make the type-L inventor indifferent between F^H and \bar{F}, and type H has a higher probability of winning in court than type L, type H must strictly prefer F^H to \bar{F}.

The above equilibrium was derived under the assumption that fees are sufficiently low for the type-L inventor to find it profitable to apply. Since the type-L inventor’s payoff in this equilibrium is equal to his payoff when offering \bar{F}, this requires

$$\phi_P \leq l_C + m + (1 - e_2)q_2\Delta_C - \phi_A/[(1 - e_1)q_1]. \quad (34)$$

Suppose instead (34) does not hold. Then, the above strategy profile cannot be part of an equilibrium. However, if the type-L inventor’s payoff from applying is positive when there are no challenges, i.e.,

$$\phi_P \leq \Delta - \phi_A/[(1 - e_1)q_1], \quad (35)$$

51
then type L will randomize over the decision to apply, and do so such that (33) holds.

The competitor chooses x to make the type-L inventor indifferent between applying and not:

$$
\pi = (1 - e_1)q_1 [x((1 - e_2)q_2(\pi + \Delta) + (e_2 + (1 - e_2)(1 - q_2))\pi - l_I)
+ (1 - x)(\pi + m + \Delta_C)] + (e_1 + (1 - e_1)(1 - q_1))\pi - \phi_L.
$$

Solving for x yields

$$
x = \frac{\Delta - \phi_P - \phi_L/[(1 - e_1)q_1]}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_I} = \hat{x}.
$$

If (35) is not satisfied, type L does not apply.

To conclude the proof, let us check whether type H finds it profitable to invest in R&D. Using $F^H = \Delta_C$, the expression for Π^H in (29) can be rewritten as

$$
\Pi^H = (e_1 + (1 - e_1)q_1)[(1 - x(1 - e_2)(1 - q_2))\Delta - xl_I - \phi_P] - (k - \pi) - \phi_L.
$$

Letting $h(\phi_A) \equiv \Pi^H/(e_1 + (1 - e_1)q_1) + \phi_P$, we have that $\Pi^H \geq 0$ if and only if $h(\phi_A) \geq \phi_P$. Substituting the equilibrium values of x in the different regions, we obtain

$$
h(\phi_A) = \begin{cases}
h_1(\phi_A) & \text{for } \phi_A \leq \hat{\phi} \\
h_2(\phi_A) & \text{for } \hat{\phi} < \phi_A \leq \bar{\phi} \\
h_3(\phi_A) & \text{for } \phi_A > \bar{\phi},
\end{cases}
$$

where

$$
h_1(\phi_A) = \Delta - \frac{k - \pi + \phi_A}{e_1 + (1 - e_1)q_1}
- \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta_C - l_c}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_I}
[(1 - e_2)(1 - q_2)\Delta + l_I]
$$

$$
h_2(\phi_A) = \Delta - \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_I}{(e_1 + (1 - e_1)q_1)e_2\Delta}
- \frac{[e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2)]\Delta - e_1l_I}{(e_1 + (1 - e_1)q_1)e_2\Delta}
$$

$$
h_3(\phi_A) = \Delta - \frac{k - \pi + \phi_A}{e_1 + (1 - e_1)q_1},
$$

and

$$
\hat{\phi} = \frac{(1 - e_1)q_1}{e_1} [k - \pi + (e_1 + (1 - e_1)q_1)[l_c + m + (1 - e_2)q_2\Delta_C
- (1 - \hat{x}(1 - e_2)(1 - q_2)\Delta + \hat{x}l_I)]
$$

$$
= \frac{(1 - e_1)q_1}{e_1} [k - \pi + (1 - e_1)q_1\hat{x}e_2\Delta_C]
$$

$$
\bar{\phi} = \frac{(1 - e_1)q_1}{e_1} (k - \pi).
$$
We again have three regions in \((\phi_A, \phi_P)\) space. For low fees (region 1), type \(L\) always applies while randomizing over the license fee to charge; for intermediate fees (region 2), type \(L\) always charges the high fee while randomizing over the application decision. In both cases, type \(L\)'s randomization is done such that the competitor is indifferent between challenging and not. The competitor herself randomizes over the challenge decision so as to make type \(L\) indifferent. For large fees (region 3), type \(L\) does not apply and the competitor does not challenge. The main difference with the baseline model is that the license fee charged by the low type to avoid a challenge is now higher, namely, \(F = l_C + m + (1 - e_2)q_2 \Delta C\), reflecting the fact that a challenge is not guaranteed to be successful even when the competitor is sure of facing a low type. Similarly, the high type’s profit is now lower than in the baseline because his patent application can be rejected by the patent office and, if granted, can be invalidated by the court.

The comparative statics results from the basic model with respect to fees extend in a straightforward way: an increase in fees leads to (weakly) fewer bad applications \((\alpha)\), (weakly) higher licence fees \((y)\), and (weakly) fewer challenges \((x)\). With respect to examination intensity \((e_1)\), we continue to have an ambiguous result on bad applications: as \(e_1\) increases, we first move from region 1, where \(\alpha = 1\), to region 2, where

\[
\alpha = \tilde{\alpha} = \left(\frac{\lambda}{1 - \lambda} \right) \left(\frac{e_1 + (1 - e_1)q_1}{(1 - e_1)q_1} \right) \left(\frac{l_C - (1 - e_2)(1 - q_2)\Delta C}{(e_2 + (1 - e_2)(1 - q_2)\Delta C - l_C)} \right) < 1.
\]

Within region 2, however, an increase in \(e_1\) leads to more bad applications, \(\partial \tilde{\alpha} / \partial e_1 > 0\). Finally, as \(e_1\) continues to increase, \(\alpha\) drops to zero in region 3. A similar ambiguous result holds for \(y\). As for the rate of challenges, an increase in \(e_1\) (weakly) reduces \(x\).

With the generalized technology, we can also consider the effects of a change in the quality of the courts, as captured by \(e_2\). As \(e_2\) increases, the equilibrium moves from region 1 to region 2 but no further: changes in \(e_2\) can never move the equilibrium to region 3 (this is a manifestation of our results on full screening; see Proposition 9 below). Within region 1, \(e_2\) has no effect on \(\alpha\) while it decreases \(x = \hat{x}\); the effect on \(y\) is ambiguous. Within region 2, \(e_2\) has no effect on \(y\) while it continuous to reduce \(x = \hat{x}\); the effect on \(\alpha\) is ambiguous. The ambiguous effect on \(\alpha = \tilde{\alpha}\) in region 2 (and similarly \(y = \tilde{y} = \tilde{\alpha}\) in region 1) can be further analyzed as follows. We have

\[
\frac{\partial \tilde{\alpha}}{\partial e_2} = \left(\frac{\lambda}{1 - \lambda} \right) \left(\frac{e_1 + (1 - e_1)q_1}{(1 - e_1)q_1} \right) \left(\frac{\Delta C((1 - q_2)\Delta C - l_C)}{((e_2 + (1 - e_2)(1 - q_2)\Delta C - l_C)^2} \right) \leq 0
\]

\[
\iff q_2 \geq 1 - \frac{l_C}{\Delta C}.
\]

Thus, an increase in the quality of the courts leads to fewer bad applications if and only if \(q_2\) is sufficiently large. This result is interesting, as \(q_2\) could be interpreted as a measure of the presumption of validity that the courts apply.
We now extend our result on the feasibility of full screening. It turns out that whether full screening can be achieved does not depend on the existence (or quality) of the courts; it only depends on the patent office’s examination intensity.

Proposition 9. There exists a combination of fees \((\phi_A, \phi_P)\) inducing full screening if and only if \(e_1 \geq \bar{e}\). For a given \(e_1 \geq \bar{e}\), any combination of fees satisfying

\[
(e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq \phi_A \geq (1 - e_1)q_1(\Delta - \phi_P).
\]

achieves full screening.

Proof. By Proposition 8, deterrence of type \(L\) \((\alpha = 0)\) requires \(\phi_A \geq (1 - e_1)q_1(\Delta - \phi_P)\). Investment by type \(H\) when type \(L\) is deterred (and thus, in equilibrium, \(x = 0\)) requires \(e_1 + (1 - e_1)q_1(\Delta - \phi_P) - (k - \pi) \geq \phi_A\). A pre-grant fee \(\phi_A\) satisfying both inequalities exists if and only if \((e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq (1 - e_1)q_1(\Delta - \phi_P)\), or

\[
e_1 \geq \frac{k - \pi}{\Delta - \phi_P}.
\]

(37)

Since the right-hand side increases with \(\phi_P\), the minimum level of \(e_1\) required to achieve full screening is obtained by evaluating (37) at \(\phi_P = 0\), yielding \(e_1 \geq (k - \pi)/\Delta = \bar{e}\). \(\square\)

Next, we revisit the result on the welfare-maximizing fee structure when full screening is not possible \((e_1 < \bar{e})\) from Proposition 4. With the generalized screening technology, the welfare function is

\[
W(\alpha, x, y) = 2\pi + S - \lambda[(e_1 + (1 - e_1)q_1)[(1 - x)(1 - e_2)(1 - q_2)]D + x(l_C + l_I)] + k + \gamma(e_1)\]

\[
- (1 - \lambda)\alpha \left[(1 - e_1)q_1 \left[y((1 - x) + x(1 - e_2)q_2) + 1 - y[D + xy(l_C + l_I)] + \gamma(e_1) \right] \right]
\]

(38)

The threshold \(\underline{e}\), which is such that region 2 is attainable for \(e_1 > \underline{e}\), is now defined by

\[
(1 - \underline{e})q_1[l_C + m + (1 - e_2)q_2\Delta_C]
\]

\[
= (\underline{e} + (1 - \underline{e})q_1)[(1 - x(1 - e_2)(1 - q_2))\Delta - \tilde{x}l_I] - (k - \pi).
\]

(39)

Proposition 10. If \(\underline{e} < e_1 < \bar{e}\) and \(\Delta_C > (l_C/(l_C + l_I))D\), welfare is maximized by setting \(\phi_P = 0\) and \(\phi_A\) such that \(\Pi^H = 0\).

Proof. The proof proceeds through a series of claims.

Claim 1: \(W(\alpha, y, x) \geq W(\alpha', y', x)\) for \(\alpha y = \alpha' y'\) if and only if \(\alpha \leq \alpha'\). Rewriting (38) as

\[
W(\alpha, x, y) = 2\pi + S - \lambda[(e_1 + (1 - e_1)q_1)[(1 - x)(1 - e_2)(1 - q_2)]D + x(l_C + l_I)] + k + \gamma(e_1)\]

\[
- (1 - \lambda)\left[\alpha xy(1 - e_1)q_1(l_C + l_I - D) + \alpha (1 - e_1)q_1(1 + x(1 - e_2)q_2)D + \gamma(e_1) \right],
\]

(38)
we have, for $\alpha y = \alpha' y'$,

$$W(\alpha, x, y) - W(\alpha', x, y') = (1 - \lambda)(\alpha' - \alpha)[(1 - e_1)q_1(1 + x(1 - e_2)q_2)D + \gamma(e_1)] \geq 0$$

if and only if $\alpha \leq \alpha'$.

Claim 2: $(\partial \partial x)W(\alpha, x, y)|_{\alpha y = \tilde{\alpha}} < 0$ if and only if $\Delta_C > (l_C/(l_C + l_I))D$. We have

$$\frac{\partial W}{\partial x} = \lambda(e_1 + (1 - e_1)q_1)[(1 - e_2)(1 - q_2)D - (l_C + l_I)]$$

$$+ (1 - \lambda)(1 - e_1)q_1\alpha y[(1 - e_2)q_2D - (l_C + l_I)]$$

$$= \left[\lambda(e_1 + (1 - e_1)q_1)(1 - e_2)(1 - q_2) + (1 - \lambda)(1 - e_1)q_1\alpha y(1 - (1 - e_2)q_2)\right]D$$

$$- \left[\lambda(e_1 + (1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1\alpha y\right](l_C + l_I).$$

Using the definition of $\hat{\lambda}$ in (30), we can rewrite this as

$$\frac{\partial W}{\partial x} = \left[\lambda(e_1 + (1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1\alpha y\right] \left(\hat{\lambda}(1 - e_2)(1 - q_2)

+ (1 - \hat{\lambda})(e_2 - (1 - e_2)(1 - q_2))\right)D - (l_C + l_I)).$$

By Proposition 8, in the equilibrium in regions 1 and 2 (i.e., for $\alpha y = \tilde{\alpha}$) we have $\hat{\lambda}(1 - e_2)(1 - q_2)$

$$+ (1 - \hat{\lambda})(e_2 - (1 - e_2)(1 - q_2)) = l_C/\Delta_C.$$

Hence,

$$\frac{\partial W}{\partial x} < 0 \Leftrightarrow \frac{l_C}{\Delta_C}D - (l_C + l_I) < 0 \Leftrightarrow \Delta_C > \left(\frac{l_C}{l_C + l_I}\right)D.$$

Claim 3: $\hat{x} \geq \hat{x}(\phi_A, \phi_P)$ for any (ϕ_A, ϕ_P) such that $l_C + m + (1 - e_2)q_2\Delta_C - \phi_A/(1 - e_1)q_1 \leq \phi_P$. Since \hat{x} is decreasing in ϕ_A and ϕ_P, its maximum \hat{x}^{max} is attained for $l_C + m + (1 - e_2)q_2\Delta_C - \phi_A/(1 - e_1)q_1 = \phi_P$. We have

$$\hat{x}^{\text{max}} = \Delta_C + m - (l_C + m + (1 - e_2)q_2\Delta_C)

(2 + (1 - e_2)q_2\Delta_C + l_I) = \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta_C - l_C}{(e_2 + (1 - e_2)(1 - q_2))\Delta_C + l_I} = \hat{x}.$$

Hence, $\hat{x}(\phi_A, \phi_P) \leq \hat{x}$ for $l_C + m + (1 - e_2)q_2\Delta_C - \phi_A/(1 - e_1)q_1 \leq \phi_P$.

Combining these three claims with the assumption that $\Delta_C > (l_C/(l_C + l_I))D$, it follows that the welfare-maximizing combination of fees solves the following optimization problem:

$$\min_{\phi_A, \phi_P} \hat{x}(\phi_A, \phi_P)$$

subject to

$$\begin{cases}
\phi_P \geq 0 \\
\phi_A \geq (1 - e_1)q_1[l_C + m + (1 - e_2)q_2\Delta_C - \phi_P] \\
\phi_P \leq h(\phi_A)
\end{cases}$$

where μ_1, μ_2, and μ_3 are the multipliers associated with the constraints and $h(\phi_A)$ was defined in the proof of Proposition 8 (recall that $\phi_P \leq h(\phi_A) \Leftrightarrow \Pi^H \geq 0$). The
first-order conditions with respect to ϕ_A and ϕ_P are
\[
\frac{\partial \hat{x}}{\partial \phi_A} = \mu_2 + \mu_3 h'(\phi_A) \tag{40}
\]
\[
\frac{\partial \hat{x}}{\partial \phi_P} = \mu_1 + \mu_2 (1 - e_1) q_1 - \mu_3. \tag{41}
\]

We now show that at the optimum $\mu_1 > 0$ and $\mu_3 > 0$ while $\mu_2 = 0$, implying $\phi_P = 0$ and $h(\phi_A) = 0$ (which is equivalent to $\Pi^H = 0$) as claimed.

We start by establishing that $h'(\phi_A) < 0$ in region 2 when $\bar{e} < e_1 < \bar{e}$ (which holds by assumption). Note first that
\[
h(\phi_A) = h_2(\phi_A) \text{ in region 2, and hence that}
\]
\[
h'(\phi_A) = h'_2(\phi_A) = -\frac{e_2(1 - e_1) q_1 - e_1(1 - e_2)(1 - q_2)]\Delta - e_1 l_I}{(e_1 + (1 - e_1) q_1) e_2 \Delta}, \tag{42}
\]
which is negative if and only if $[e_2(1 - e_1) q_1 - e_1(1 - e_2)(1 - q_2)]\Delta > e_1 l_I$. Next, note that $e_1 > \bar{e}$ implies that $h(\phi_A) > 0$: by definition of ϕ_A,
\[
h_1(\phi) = (1 - \bar{x}(1 - e_2)(1 - q_2))\Delta - \bar{x} l_I - \frac{k - \pi + \phi}{e_1 + (1 - e_1) q_1}
\]
\[= l_C + m + (1 - e_2) q_2 \Delta C - \frac{\phi}{(1 - e_1) q_1}.
\]

Replacing ϕ on the right-hand side we have that
\[
h(\phi) = h_1(\phi) = l_C + m + (1 - e_2) q_2 \Delta C - \frac{e_1 + (1 - e_1) q_1}{e_1} \left[l_C + m + (1 - e_2) q_2 \Delta C
\right.
\]
\[- (1 - \bar{x}(1 - e_2)(1 - q_2))\Delta + \bar{x} l_I + \frac{k - \pi}{e_1 + (1 - e_1) q_1} \right] > 0,
\]
or
\[
(1 - e_1) q_1 [l_C + m + (1 - e_2) q_2 \Delta C] < (e_1 + (1 - e_1) q_1) [(1 - \bar{x}(1 - e_2)(1 - q_2))\Delta - \bar{x} l_I] - (k - \pi)
\]
\[
\iff e_1 > \bar{e}.
\]

Next, replacing ϕ in $h_1(\phi)$ yields
\[
h_1(\phi) = \Delta - \frac{k - \pi}{e_1 + (1 - e_1) q_1} - \bar{x} [(1 - e_2)(1 - q_2)\Delta + l_I]
\]
\[- \frac{1 - e_1) q_1}{e_1 + (1 - e_1) q_1} [k - \pi - (e_1 + (1 - e_1) q_1) \bar{x} e_2 \Delta]
\]
\[= \Delta - \frac{k - \pi}{e_1} + \frac{\bar{x}}{e_1} [(e_2(1 - e_1) q_1 - e_1(1 - e_2)(1 - q_2)\Delta - e_1 l_I].
\]

Since $\Delta - (k - \pi)/e_1 < 0$ by the assumption that $e_1 < \bar{e}$ and we have just established that $h_1(\phi) > 0$ when $e_1 > \bar{e}$, it must be that $(e_2(1 - e_1) q_1 - e_1(1 - e_2)(1 - q_2)\Delta > e_1 l_I$, and hence that $h'(\phi_A) < 0$. 56
Combining \(h'(\phi_A) < 0 \) with the fact that \(\partial \hat{x}/\partial \phi_A < 0 \), (40) implies \(\mu_3 > 0 \). Using (40) to replace \(\mu_2 \) in (41), we have
\[
\mu_1 = \frac{\partial \hat{x}}{\partial \phi_P} - (1 - e_1)q_1 \left(\frac{\partial \hat{x}}{\partial \phi_A} - \mu_3 h'(\phi_A) \right).
\]
Noting that \(\partial \hat{x}/\partial \phi_P = (1 - e_1)q_1 \partial \hat{x}/\partial \phi_A \) and substituting for \(h'(\phi_A) \) from (42), we obtain
\[
\mu_1 = \mu_3 \left[1 - \frac{e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2)\Delta - e_1l_I}{(e_1 + (1 - e_1)q_1)e_2\Delta} \right]
\]
\[
= \frac{e_1[(e_2 + (1 - e_2)(1 - q_2)\Delta + l_I]}{(e_1 + (1 - e_1)q_1)e_2\Delta} > 0.
\]
We conclude that \(\phi_P = 0 \) and \(h(\phi_A) = \phi_P = 0 \) at the optimum.

As Proposition 10 shows, our results on the welfare-maximizing structure of fees are robust to the introduction of patent office and court errors.

Appendix C Simulations

C.1 Homogeneous-good Cournot model with two-sided litigation costs

We assume a linear inverse demand: \(P(Q) = a - Q \) where \(Q = q_I + q_C \). The invention reduces unit production cost from \(c \) to \(c' = (1 - s)c \) where \(s \in (0, 1) \).

Let \(q(c_i, c_j) \) denote the Cournot equilibrium output when firm \(i \)'s cost is \(c_i \) and its rival’s cost is \(c_j \). We have
\[
q(c_i, c_j) = \frac{a - 2c_i + c_j}{3}.
\]
Let \(\pi_I(r) \) and \(\pi_C(r) \) denote the inventor’s and competitor’s equilibrium profits, respectively, when the competitor accepts a royalty rate of \(r \). We have
\[
\pi_I(r) = [a - q(c', c' + r) - q(c' + r, c') - c'q(c', c' + r) + rq(c' + r, c')
\]
\[
\pi_C(r) = [a - q(c', c' + r) - q(c' + r, c') - c' - r]q(c' + r, c')
\]
Note that \(\pi_I(0) = \pi_C(0) = (\frac{a - c'}{3})^2 \). Moreover, it can be shown that
\[
\pi_I(r) = \pi_I(0) + 5\delta(r)
\]
\[
\pi_C(r) = \pi_C(0) - 4\delta(r),
\]
where
\[
\delta(r) = \frac{1}{9}r(a - (1 - s)c - r).
\]
Notice that this implies
\[
4[\pi_I(r) - \pi_I(0)] = 5[\pi_C(0) - \pi_C(r)].
\] \quad (43)
In region 1, the type-L inventor proposes a royalty r_H with probability y and a royalty r_L with probability $1 - y$, while the competitor challenges with probability x when being offered the high royalty rate r_H. Let us first determine r_H and r_L. r_H is the royalty charged by the type-H inventor, namely $r_H = sc$ (Fauli-Oller and Sandonis, 2002). We then have

$$\pi_I(r_H) - \pi_I(0) = \frac{5}{9}(a - c)sc = \Delta.$$

r_L must be such that the competitor is indifferent between challenging and not, given that the inventor is sure to be bad. That is, r_L solves

$$\pi_C(0) - l_C = \pi_C(r_L).$$

Then, (43) implies

$$\pi_I(r_L) - \pi_I(0) = \frac{5}{4}[\pi_C(0) - \pi_C(r_L)] = \frac{5}{4}l_C.$$

Solving explicitly for r_L yields

$$r_L = \frac{1}{2} \left[a - (1 - s)c - \sqrt{(a - (1 - s)c)^2 - 9l_C} \right].$$

With these expressions, we can compute the cost of the patent to the competitor, $\Delta_C = \pi_C(0) - \pi_C(r_H) = \frac{5}{9}(a - c)sc$, and the incremental profit from monopoly power via royalty licensing, which (in the Cournot model) depends on whether the high or low royalty is charged. With a slight abuse of notation, we denote by $m(\Delta_C)$ the incremental profit when r_H is charged and by $m(l_C)$ the incremental profit when r_L is charged. We have

$$m(\Delta_C) = \Delta - \Delta_C = \pi_I(r_H) - \pi_I(0) - (\pi_C(0) - \pi_C(r_H)) = \frac{1}{9}(a - c)sc = \frac{1}{4}\Delta_C$$

$$m(l_C) = \pi_I(r_L) - \pi_I(0) - (\pi_C(0) - \pi_C(r_L)) = \frac{1}{4}l_C.$$

Thus, for $z \in \{\Delta_C, l_C\}$, $m(z) = \frac{1}{4}z$.

Also note that the price elasticity, evaluated at the equilibrium with r_H is given by

$$\eta = -\frac{a + (2 - s)c}{2a - (2 - s)c}.$$

C.2 Embedding the theoretical model into a Cournot setting

We next determine x. The competitor chooses x so as to make the type-L inventor indifferent between r_H and r_L. Note that, in the event of a challenge, the L type’s patent will be invalidated; hence the royalty rate will be $r = 0$ and his profit $\pi_I(0)$. Thus x solves

$$\pi_I(r_L) = x[\pi_I(0) - l_I] + (1 - x)\pi_I(r_H).$$
Solving for x and plugging in the values computed above we obtain

$$x = \frac{\Delta_C + m(\Delta_C) - (l_C + m(l_C))}{\Delta_C + m(\Delta_C) + I_T} = \frac{(5/4)[\Delta_C - l_C]}{(5/4)\Delta_C + l_T} = \frac{4(a - c)sc - 9l_C}{4(a - c)sc + (36/5)I_T}.$$

Finally, we determine y. The low type inventor chooses y so as to make the competitor indifferent between challenging and not when observing r_H:

$$\hat{\lambda} \pi_C(r_H) + (1 - \hat{\lambda}) \pi_C(0) - l_C = \pi_C(r_H),$$

which yields

$$(1 - \hat{\lambda})[\pi_C(0) - \pi_C(r_H)] = l_C$$

where

$$\hat{\lambda} = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)y},$$

is the competitor’s posterior probability that the patent is of type H. Note that because the competitor’s belief is correct in equilibrium, $\hat{\lambda}$ is also the probability that a challenged patent is upheld by courts, and thus equals the patentee win rate (VR).

Since $\Delta_C = \pi_C(0) - \pi_C(r_H)$ we can write

$$\hat{\lambda} = \frac{\Delta_C - l_C}{\Delta_C} = VR.$$

We thus have

$$\hat{\lambda} = 1 - \frac{9l_C}{4(a - c)sc}.$$

Using the two equations for $\hat{\lambda}$ and solving for y yields

$$y = \frac{\lambda}{1 - \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)} \frac{9l_C}{(a - c)sc - 9l_C}}.$$

With these results, we can express the challenge credibility constraint as

$$\left(1 - \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)}\right) \frac{4}{9} (a - c)sc \geq l_C.$$

For each simulation run, we confirm that the output (a,c,l_C,λ,e) satisfies this constraint.

The grant rate is

$$GR = \lambda + (1 - \lambda)(1 - e)$$

and the observed litigation rate is

$$LR = \frac{x[\lambda + (1 - \lambda)(1 - e)y]}{\lambda + (1 - \lambda)(1 - e)} = \frac{x\lambda}{GR \lambda}.$$

Assuming identical litigation costs, $l_I = l_C$, and using the fact that, in equilibrium, $l_C = (1 - \hat{\lambda})\Delta_C$, we can simplify the expression for x as

$$x = \frac{5\hat{\lambda}}{9 - 4\hat{\lambda}}.$$
Plugging this into LR, using $\hat{\lambda} = VR$, and solving for λ yields
\[
\lambda = \frac{LR \cdot GR(9 - 4VR)}{5}.
\]
Finally, from the grant rate equation we then obtain e as
\[
e = 1 - \frac{GR - \lambda}{1 - \lambda} = \frac{5(1 - GR)}{5 - LR \cdot GR(9 - 4VR)}.
\]

R&D Equation

Expected returns to innovation relative to no invention for types L and H are:
\[
\Pi_H = \pi_I(r_H) - xl_I - \phi_A - \phi_P - \pi_{NI}
\]
\[
\Pi_L = e\pi_I(0) + (1 - e)\left[y(x\pi_I(0) + (1 - x)\pi_I(r_H)) + (1 - y)\pi_I(r_L) - xyI - \phi_P\right] - \phi_A - \pi_{NI}.
\]

Setting observed R&D expenditures, R (including a rate of return) equal to expected returns to innovation:
\[
(1 + \tau)R = \lambda\Pi_H + (1 - \lambda)\Pi_L,
\]
where τ is the private rate of return to R&D, estimated by Bloom, Schankerman and Van Reenen (2013) at 0.25.

Given the earlier analysis, the right hand side of this equation can be expressed as a function of $(l, a, c, \lambda, s, \eta, VR, GR)$.

C.3 Computing investment costs, R&D and welfare

Note that $K = \lambda\kappa_H + (1 - \lambda)\kappa_L$, where K denotes observed investment expenditure per patent application. In the model we normalize $\kappa_L = 0$ but for the simulations we need estimates of both κ_L and κ_H. To obtain these, we exploit the following relationships:
\[
\kappa_H = \frac{K - (1 - \lambda)\kappa_L}{\lambda}
\]
and
\[
\kappa_L \leq \pi_I(0) - \pi_{NI} \leq \kappa_H \leq \pi_I(r_H) - xl_I - \phi_A - \phi_P - \pi_{NI}
\]
where $\pi_I(0)$ is Cournot profit for the innovator if there is no patent (zero royalty), $\pi_I(r_H)$ is innovator profit at the high royalty and π_{NI} is profit if there is no cost-reducing invention (the outside option payoff). The first equation defines a locus of (κ_L, κ_H) consistent with observed total development cost. The first two inequalities in the second equation say that low type inventions would be developed without patent protection but high types would not. The last inequality ensures that there is sufficient
incentive with a patent to develop the high type. Among all \((\kappa_L, \kappa_H)\) on the locus that satisfy the inequalities, we use the average. Nothing of substance changes if we use other feasible values.

Finally, to compute welfare, note that industry output in equilibrium is

\[
Q(c_i, c_j) = q(c_i, c_j) + q(c_j, c_i) = \frac{2(a - c') - r}{3}.
\]

Hence, consumer surplus, as a function of the royalty rate \(r\), is

\[
CS(r) = \frac{1}{2} \left(\frac{2(a - c') - r}{3} \right)^2.
\]

Let \(w(r) = \pi_I(r) + \pi_C(r) + CS(r)\). Then, expected total welfare is

\[
W = \lambda \left[w(r_H) - x(l_C + l_I) - \gamma(e) - \kappa_H \right]
+ (1 - \lambda) \left[\alpha \left[ew(0) + (1 - e) \left(y(xw(0) + (1 - x)w(r_H)) + (1 - y)w(r_L) \right)
- xy(l_C + l_I) \right] - \gamma(e) \right] + (1 - \alpha) w(0) - \kappa_L \right] + (1 - \alpha) w(0) - \kappa_L\]

\textbf{C.4 Calibration}

\textit{Examination cost per patent application, }\gamma(e)\textit{ }

We assume constant returns to scale in examination intensity per application, \(e : \gamma(e) = \psi e\). Given the simulated value of \(e\), say \(\hat{e}\), we compute the unit cost \(\psi\) using the examination/search cost per patent reported by the USPTO as $3,660. Hence \(\psi = \frac{3660}{\hat{e}}\), and in percentage-point terms, \(MCE = \psi/100\). For each policy experiment, we use the new simulated examination intensity, \(e^*\), and then compute the counterfactual cost of processing an application as \(\gamma(e^*) = \psi e^*\).

\textit{Pre-grant (application) fees, }\phi_A\textit{ }

Patent office pre-grant fees include filing, search, examination and processing fees. This yields \(\phi_A = $1,740\) (www.uspto.gov/learning-and-resources/fees-and-payment/uspto-fee-schedule). We exclude filing fees for excess independent claims (above three) and total claims (above 20) because the average numbers of claims fall below these thresholds (Dennis Crouch, “The Rising Size and Complexity of the Patent Document,” University of Missouri School of Law, http://dx.doi.org/10.2139/ssrn.1095810). We also include the the cost of preparing the patent application. External estimates (www.ipwatchdog.com/2015/the-cost-of-obtaining-a-patent-in-the-us) fall in the range $10,000 – $20,000. We use $15,000 as the baseline, but results are very similar for other values in the range.

\textit{Post-grant (activation) fees, }\phi_P\textit{ }

To compute post-grant fees, we include the issuance fee and (large entity) maintenance
fees at ages 4, 8 and 12 (www.uspto.gov/learning-and-resources/fees-and-payment/uspto-fee-schedule). Assuming maintenance to full term, the computed post-grant fees (ignoring discounting) are $\phi_P = 13,560. We do not include fees for ex parte re-examination, supplemental examination or various appeals.

R&D per patent, R

The worldwide R&D expense per patent application in 2008 is reported as $2.4 million (InfoBrief NSF13-207, National Center for Science and Engineering Statistics, U.S. National Science Foundation). We use this figure as the baseline, but simulation results are similar using $2, 3 and 4 million.

Investment cost, K

We obtain the fraction of private R&D costs accounted for by development expenditures, taken from annual U.S. National Science Foundation surveys (www.nsf.gov/statistics/2016/nsf16301/pdf/tab17.pdf). We take the average value of this ratio for the period 1995-2000, which is 0.80, and multiply it by the R&D per patent as described above.

Litigation rate

The litigation rate is set at 0.015, computed as the ratio of patent suits to the total number of patent grants (Lemley, 2001). However, studies of renewal data show that most patents have very little value, and thus are unlikely to satisfy the challenge credibility constraint in the model. Thus we adjust the overall litigation rate to correspond to those patents that satisfy this constraint in order to compute LR used in the simulations. To do this, we compute the minimum value that satisfies the constraint, denoted by Δ^\ast_C, given an assumption on the minimum litigation costs l_{min}. That is, Δ^\ast_C solves:

$$\left(1 - \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)}\right)\Delta^\ast_C = l_{min}.$$

Substituting for λ and e derived in Appendix C.2, we can express Δ^\ast_C as

$$\Delta^\ast_C(p) = \frac{5l_{min}}{4\left(1 - \frac{0.015(9-4VR)}{8(1-p)}\right)},$$

where p is the percentile of the lognormal distribution of the value of patent rights that corresponds to Δ^\ast_C. We can therefore solve for p. To solve for p, we use the estimated parameters of the lognormal distribution of the value of patent rights for Germany (Schankerman and Pakes, 1986), rescaled for inflation and relative values of GDP of the U.S. and Germany for 2014 (in this we assume that the value of patent rights is proportional to GDP, which is roughly consistent with the findings in their paper). Details are available on request.
as \(LR = \frac{0.015}{p} \). In the baseline simulations with perfect courts, we find \(p = 0.107 \) and thus \(LR = 0.14 \). For the simulations with imperfect courts it is very similar.

We set \(l_{\text{min}} = \$350,000 \), which is the minimum litigation cost to the end of discovery for cases where the value at stake is less than \$1 million, as reported by the American Intellectual Property Law Association (2011).

Validation rate

We use the fraction of patent challenge cases in which the validity of the patent is upheld by the court, taken from Allison, Lemley and Schwartz (2014). Using all cases filed in U.S. district courts for 2008-09 (decided 2009-13), they compute that the *challenger* wins in about 43% of the invalidity suits. As an approximation, we set the validation rate at 0.60.

Grant rate

The patent grant rate is measured by the number of patent grants divided by the number of applications (including continuation and divisional filings). Carley, Hegde and Marco (2015) compute this grant rate over the period 1996-2005, which they refer to as the ‘family allowance rate’. We set the grant rate at 0.75, which is roughly the average over the period 1991-2000.

C.5 Imperfect courts

In this section we extend the Cournot model to a setting with imperfect courts. We consider a special case of the generalized screening technology introduced in Appendix B where \(e_1 = e, e_2 = \beta + (1 - \beta)e \) with \(\beta \in [0, 1] \), \(q_1 = 1 \), and \(q_2 = \hat{\lambda} \). That is, the courts are more accurate than the patent office (the higher \(\beta \), the closer the courts are to being perfect), and while the patent office accepts all applications for which it does not find evidence either way, the courts apply a presumption of validity that depends on what happens at the previous stages: if no evidence is found by the court, patents are held valid with probability \(\hat{\lambda} \), which corresponds to the Bayesian posterior that the inventor is of type \(H \). In region 1, we have

\[
\hat{\lambda} = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e_1)y}.
\]

Thus (in region 1) \(q_2 \) depends endogenously on \(e_1, \lambda \) and \(y \).

The high royalty rate charged by the type-\(H \) inventor continues to be \(r_H = sc \). The low royalty rate \(r_L \), which must be such that the competitor is indifferent between challenging and not given that the inventor is sure to be bad, now solves

\[
(1 - e_2)\hat{\lambda}\pi_C(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_C(0) - l_C = \pi_C(r_L).
\]
Subtracting $\pi_C(0)$ from both sides and rearranging, we obtain

$$
\pi_C(0) - \pi_C(r_L) = c + (1 - e_2)\lambda [\pi_C(0) - \pi_C(r_H)] \\
= c + 4(1 - e_2)\lambda \delta(r_H) \\
= c + \frac{4}{9}(1 - e_2)\lambda (a - c)sC.
$$

Then, (43) implies

$$
\pi_I(r_L) - \pi_I(0) = \frac{5}{4}[\pi_C(0) - \pi_C(r_L)] = \frac{5}{4}l_C + \frac{5}{9}(1 - e_2)\lambda (a - c)sC.
$$

One can solve explicitly for r_L, yielding

$$
r_L = \frac{1}{2} \left[a - (1 - s)c - \sqrt{(a - (1 - s)c)^2 - 4(1 - e_2)\lambda (a - c)sC - 9l_C} \right].
$$

Thus, for any $e_2 < 1$, r_L is higher than in the baseline model, where $e_2 = 1$. Intuitively, the low type can ask for a higher royalty because the competitor is not sure to win in court even when she is sure of facing a low type.

Now let us determine x. The competitor chooses x so as to make the bad type of inventor indifferent between r_H and r_L. Note that, in the event of a challenge, the low type’s patent is upheld with probability $(1 - e_2)\lambda$ and invalidated with probability $(e_2 + (1 - e_2)(1 - \hat{\lambda}))$, while the high type’s patent is upheld with probability $(e_2 + (1 - e_2)\hat{\lambda})$ and invalidated with probability $(1 - e_2)(1 - \hat{\lambda})$. Thus x solves

$$
\pi_I(r_L) = x[(1 - e_2)\lambda \pi_I(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_I(0) - l_I] + (1 - x)\pi_I(r_H).
$$

Subtracting $\pi_I(0)$ from both sides yields

$$
\pi_I(r_L) - \pi_I(0) = x[(1 - e_2)\lambda [(\pi_I(r_H) - \pi_I(0)] - l_I] + (1 - x)[\pi_I(r_H) - \pi_I(0)].
$$

Solving for x and plugging in the values computed above we obtain

$$
x = \frac{\pi_I(r_H) - \pi_I(0) - [\pi_I(r_L) - \pi_I(0)]}{(1 - (1 - e_2)\lambda)[\pi_I(r_H) - \pi_I(0)] + l_I}
\quad = \frac{\frac{5}{9}(1 - (1 - e_2)\lambda)(a - c)sC - \frac{4}{3}l_C}{\frac{5}{9}(1 - (1 - e_2)\lambda)(a - c)sC + l_I}.
$$

Finally, let us determine y. The low type of inventor chooses y so as to make the competitor indifferent between challenging and not when observing r_H. That is, y solves

$$
\hat{\lambda}[(e_2 + (1 - e_2)\lambda)\pi_C(r_H) + (1 - e_2)(1 - \hat{\lambda})\pi_C(0)] \\
+ (1 - \hat{\lambda})[(1 - e_2)\hat{\lambda} \pi_C(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_C(0)] - l_C = \pi_C(r_H)
$$
\[\Rightarrow [(1 - e_2)(1 - \hat{\lambda}) + e_2(1 - \hat{\lambda})]\pi_C(0) = (1 - \hat{\lambda})[\pi_C(0) - \pi_C(r_H)] = l_C, \]

which is the same expression as in the baseline model. We have

\[\pi_C(0) - \pi_C(r_H) = \frac{4}{9}(a - c) sc. \]

Thus, in equilibrium

\[\hat{\lambda} = 1 - \frac{9l_C}{4(a - c) sc}. \] (45)

Using (44) to solve for \(y \) yields

\[y = \frac{\lambda}{1 - \lambda} \left(\frac{9l_C}{(4(a - c) sc - 9l_C)} \right). \]

The challenge credibility constraint becomes

\[\hat{\lambda}[(e_2 + (1 - e_2)\hat{\lambda})\pi_C(r_H) + (1 - e_2)(1 - \hat{\lambda})\pi_C(0)] \]

\[+ (1 - \hat{\lambda})[(1 - e_2)\hat{\lambda}\pi_C(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_C(0)] - l_C \geq \pi_C(r_H) \]

\[\Leftrightarrow (1 - \hat{\lambda}) \frac{4}{9}(a - c) sc \geq l_C, \]

where

\[\hat{\lambda} = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e_1)}. \]

Inferring \(\lambda \) and \(e \) from \(VR, GR, \) and \(LR \).

The validation rate is

\[VR = \hat{\lambda}[e_2 + (1 - e_2)\hat{\lambda}] + (1 - \hat{\lambda})(1 - e_2)\hat{\lambda} = \hat{\lambda}. \]

The grant rate is

\[GR = \lambda + (1 - \lambda)(1 - e_1). \]

The litigation rate is

\[LR = \frac{x[\lambda + (1 - \lambda)(1 - e_1)y]}{\lambda + (1 - \lambda)(1 - e_1)} = \frac{x\lambda}{GR \cdot \hat{\lambda}}. \]

Using \(l_I = l_C \), \(l_C = (1 - \hat{\lambda}) \frac{4}{9}(a - c) sc \), \(e_1 = e \), \(e_2 = \beta + (1 - \beta)e \), and \(VR = \hat{\lambda} \), we can write

\[x = \frac{\frac{5}{9}(1 - (1 - \beta)(1 - e)VR)(a - c) sc - \frac{5}{9}(1 - VR)(a - c) sc}{\frac{5}{9}(1 - (1 - \beta)(1 - e)VR)(a - c) sc + \frac{4}{9}(1 - VR)(a - c) sc} \]

\[= \frac{5VR(1 - (1 - \beta)(1 - e))}{9 - VR(5(1 - \beta)(1 - e) + 4)}. \]

Substituting for \(x \) and \(\hat{\lambda} \) in the litigation rate equation yields

\[LR = \frac{5\lambda(1 - (1 - \beta)(1 - e))}{GR[9 - VR(5(1 - \beta)(1 - e) + 4)]}. \]

Together with the grant rate equation (replacing \(e_1 = e \)), this can be used to determine \(e \) and \(\lambda \).